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Preface

E-commerce services are suffering abuse by programs (bots, spiders, etc.) mas-
querading as legitimate human users. Efforts to defend against such attacks
have, over the past several years, stimulated investigations into a new family of
security protocols – “Human Interactive Proofs” (HIPs) – which allow a person
to authenticate herself as a member of a given group: e.g., as a human (vs. a
machine), as herself (vs. anyone else), as an adult (vs. a child). Most commercial
uses of HIPs today are CAPTCHAs, “Completely Automatic Public Turing tests
to tell Computers and Humans Apart,” which exploit the gap in ability between
humans and machine vision systems in reading images of text. HIP challenges
can also be non-graphical, e.g., requiring recognition of speech, solving puzzles,
etc.

We are pleased to present the first refereed and archivally published collection
of state-of-the-art papers on HIPs and CAPTCHAs. Each paper was reviewed
by three members of the Program Committee, judged by the Co-chairs to be of
sufficient relevance and quality, and revised by the authors in response to the
referees’ suggestions.

The papers investigate performance analysis of novel CAPTCHAs, HIP ar-
chitectures, and the role of HIPs within security systems. Kumar Chellapilla,
Kevin Larson, Patrice Simard, and Mary Czerwinski describe user trials of
a CAPTCHA designed to resist segmentation attacks, including a systematic
evaluation of its tolerance by human users. Henry Baird, Michael Moll, and Sui-
Yu Wang analyze data from a human legibility trial of another segmentation-
resistant CAPTCHA and locate a highly legible engineering regime. Amalia Rusu
and Venu Govindaraju describe research towards CAPTCHAs based on reading
synthetically damaged images of real images of unconstrained handwritten text.
Yong Rui, Zicheng Liu, Shannon Kallin, Gavin Janke, and Cem Paya discuss
the results of experiments with human subjects presented with two kinds of
CAPTCHAs: one based on reading text, and a new one based on the detection
of well-formed synthetic faces.

Monica Chew and J.D. Tygar discuss collaborative filtering CAPTCHAs
which do not depend on absolute answers, but are graded by comparison with
other people’s answers. Tim Converse proposes CAPTCHA generation as a not-
for-profit Web service and argues for open-sourcing the code. Daniel Lopresti pro-
poses using instances of open pattern recognition problems to build CAPTCHAs
in order to benefit both online security and pattern recognition research.

Jon Bentley and Colin Mallows describe methods for quantifying the assur-
ance that can be inferred from a correct answer to a password query: the prin-
ciples underlying this analysis are applicable to the evaluation of CAPTCHA
security. Rachna Dhamija and J.D. Tygar investigate HIPs in which a user is-
sues challenges to the computer, rather than the other way around, enabling the
detection of phishing attacks.
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Building Segmentation Based Human-Friendly           
Human Interaction Proofs (HIPs) 

Kumar Chellapilla, Kevin Larson, Patrice Y. Simard, and Mary Czerwinski 

 Microsoft Research, One Microsoft Way, Redmond, WA, USA 98052 
{kumarc, kevlar, patrice, marycz}@microsoft.com 

Abstract. Human interaction proofs (HIPs) have become common place on the 
internet due to their effectiveness in deterring automated abuse of online ser-
vices intended for humans. However, there is a co-evolutionary arms race in 
progress and these proofs are becoming more difficult for genuine users while 
attackers are getting better at breaking existing HIPs. We studied various popu-
lar HIPs on the internet to understand their strength and human friendliness. To 
determine HIP strength, we adopted a direct approach of building computer at-
tacks using image processing and machine learning techniques. To understand 
human-friendliness, a sequence of users studies were conducted to investigate 
HIP character recognition by humans under a variety of visual distortions and 
clutter commonly employed in reading-based HIPs. We found that many of the 
online HIPs are pure recognition tasks that can be easily broken using machine 
learning. The stronger HIPs tend to pose a combination of segmentation and 
recognition challenges. Further, the HIP user studies show that given correct 
segmentation, computers are much better at HIP character recognition than hu-
mans. In light of these results, we propose that segmentation-based reading 
challenges are the future for building stronger human-friendly HIPs. An exam-
ple of such a segmentation-based HIP is presented with a preliminary assess-
ment of its strength and human-friendliness. 

1   Introduction 

Human Interaction Proofs1 (HIPs) [3] or Completed Automated Public Turing tests to 
tell Computers and Humans Apart (CAPTCHAs) [4] are systems that allow a com-
puter to distinguish between another computer and a human. These systems enable 
the construction of automatic filters that can be used to prevent automated scripts 
from utilizing services intended for humans [4]. An overview of the work in this area 
can be found in [3]. Work on building HIPs dates back to 1997 with the first HIP 
being invented [13] at the DEC Systems Research Center for blocking abusive auto-
matic submission of URLs to the AltaVista web-site (www.altavista.com). Since then 
numerous HIPs have been proposed and several have been adopted by companies to 

                                                           
1 These are also referred to as “Human Interactive Proofs.” The term “Human Interaction 

Proof” is preferred in this paper as it is clearer in indicating that these are tests for human in-
teraction. 
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protect various services on the web. However, the basic challenge still remains the 
same: design a computer program that can automatically generate and grade tests that 
most humans can pass but current computer programs cannot pass. For a HIP to be 
successful in practice, it should also be fast and be capable of generating millions of 
unique samples a day. 

Construction of HIPs of practical value is difficult because it is not sufficient to 
develop challenges at which humans are somewhat more successful than machines. 
This is because the cost of failure from using machines to solve the puzzles may be 
very small. In practice, if one wants to block automated scripts, a challenge at which 
humans are about 90% successful and machines are 1% successful, may not be suffi-
cient, especially when the cost of failure and repetition is low for the machine 
[2,7,12]. At the same time, the identical challenge must not put too much burden on 
the human in order to avoid discouraging the use of the service. This is summarized 
in Figure 1. The figure shows an ideal distribution of HIPs. The sweet spot, where the 
HIPs are easy for humans to recognize but difficult for hackers to crack, is not guar-
anteed to actually exist. Furthermore, automatically generated HIPs, being random in 
nature, will have a distribution of difficulty, with some particular instances extending 
beyond the hypothesized sweet spot.  
 

 
Fig. 1. Regions of feasibility as a function of HIP difficulty for humans and computers algo-
rithms. 

Depending on the cost of the attack and the value of the service, automatic scripts 
should not be more successful than 1 in 10,000 (0.01%).  For good usability the hu-
man success rate should approach 90%. While the latter is a common requirement for 
reducing the number of retries a human user has to endure, the former is obtained by 
analyzing the cost of hiring humans to solve HIPs. For example, requiring a signup 
HIP for creating an e-mail account only imposes a maximal cost of about .002 cents 
per message, while the minimum estimate for the costs/potential revenue from send-
ing spam are around .0025 cents, with many spammers charging or earning 5 to 10 
times that [12]. Thus, a practical HIP must not only be secure but also be human-
friendly. Human-friendliness encompasses both a) the visual appeal and annoyance 
factor of a HIP, and also b) how well it utilizes the difference in ability between hu-
mans and machines at solving segmentation and recognition tasks. While HIP secu-
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rity considerations push designers to make the HIP difficult for both humans and 
computers, the human-friendliness requirements force the designer to make them only 
as hard as they need to be and still be effective at deterring abuse. Due to this inherent 
conflict between these two requirements, online HIPs are undergoing an arms race. 
As computer vision research advances, computers get faster, and attackers get sophis-
ticated, existing HIPs will become ineffective and new HIPs will have to be created. 
Over time, the sweet spot will decrease in size. Unfortunately, humans are unlikely to 
get better at solving HIPs in the same timeframe [10,11].  

Owing to their advantages, reading-based HIPs have become common place for 
protecting internet web sites against abuse. Section 2 presents motivations for a read-
ing-based HIP and several examples of common reading-based HIPs that can be sam-
pled on the web. It also presents the segmentation and recognition parts of the HIP 
challenge and key design choices that go into building a reading-based HIP. Section 3 
addresses HIP security from the point of view of a computer attacker attempting to 
solve a HIP completely (both segmentation and recognition parts being solved) or 
simply the recognition part of the problem. Section 4 investigates human-friendliness 
of a HIP by understanding human ability in solving HIP segmentation and recogni-
tion. Section 5 reviews lessons learned from computer attacks and user studies and 
presents segmentation-based HIPs. A preliminary analysis of the security and human-
friendliness of an example segmentation-based HIP is also presented.  

2   Examples of HIPs 

We have come across dozens of proposals for HIP designs, ranging from counting 
objects in a picture, segmenting faces, recognizing animations, identifying words in 
audio, etc. [4]. Among visual challenges, Reading-based HIPs are the most obvious 
favorite [4,5,8,12,13,14]. These HIPs are made of characters rendered to an image 
and distorted before being presented to the user. Solving the HIP requires identifying 
all characters in the correct order. Several reasons for their popularity are:  

1) optical character recognition (OCR) is a well studied field and the state of 
the art is well known,  

2) characters were designed by humans for humans and humans have been 
trained at the task since childhood,  

3) each character has a corresponding key on the keyboard and 8 keystrokes 
span a space of over 1000 billion solutions,  

4) localization issues are minimal using western characters and numbers (with-
out dictionaries), 

5) the task is easily understood by users without much instruction, and 
6) character-based HIPs can be generated quickly2.  

Figure 2 presents reading based HIPs that can be sampled from the web while signing 
up for free e-mail accounts with Mailblocks (www.mailblocks.com), MSN/Hotmail 
(www.hotmail.com), Yahoo! (www.yahoo.com), Google (gmail.google.com), run-

                                                           
2  Over 300 8-character HIPs can be generated per second on a 3GHz P4 [2,12] 
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ning a whois query at Register.com (www.register.com) or searching for tickets at 
Ticketmaster (www.ticketmaster.com), etc. 

 
 

Mailblocks 
   

MSN/Hotmail 
   

MSN/Hotmail  
(after May 2004) 

   

Register.com 
   

Register.com  
(late 2004) 

   

Yahoo!/EZ-Gimpy 

   

   

  
Yahoo!  

(after Aug’04)   
Ticketmaster 

    

Google 
   

Fig. 2. Example Human Interaction Proofs (HIPs). 

Solutions to Yahoo (ver1) HIPs are common English words, but those for ticket-
master and Google do not necessarily belong to the English dictionary. They appear 
to have been created using a phonetic generator [8]. Examining the changes in MSN, 
Yahoo!, and Register.com HIPs, we note that these HIPs are becoming progressively 
more difficult. While MSN introduced more arcs as clutter, Yahoo! gave up their 
language model and replaced simple textures and grids with more random intersect-
ing lines and arcs. Register.com’s update was relatively minor as they simply intro-
duced digits into their character set. 
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2.1   Segmentation and Recognition Challenges 

Reading-based HIP challenges typically comprise a segmentation challenge followed 
by recognition challenges3. Solving the segmentation challenge requires the identifi-
cation of character locations in the right order. The random location of characters, 
background textures, foreground and background grids or lines, and clutter in the 
form of arcs make the segmentation problem difficult. Image warp exacerbates the 
segmentation problem by reducing the effectiveness of preprocessing stages of a 
segmentation algorithm that attempt to estimate and remove the background textures 
and foreground lines, etc. Once character locations are reliably identified (in the right 
order) each of the characters needs to be recognized correctly giving rise to the rec-
ognition problem. The character recognition problem is made difficult through 
changes in scale, rotation, local and global warp, and intersecting random arcs. 

2.2   HIP Design Choices 

While the segmentation and recognition challenges provide a conceptual breakdown 
of the HIP challenge, building an actual reading-based HIP requires one to make 
several independent choices: 

a) Character set: The character set to be used in the HIP.  

b) Affine transformations: Translation, rotation, and scaling of characters 

c) Adversarial clutter: Random arcs, lines, or other simple geometric shapes 
that intersect with the characters and themselves 

d) Image warp: elastic deformations of the HIP Image at different scales i.e., 
those that stretch and bend the character itself (global warp) and those that 
simply jiggle the character pixels (local warp) 

e) Background and foreground textures: These textures are used to form a 
colored HIP image from a bi-level or grayscale HIP mask generated by using 
a) through d) 

f) Language model: the language model determines both the conditional and 
joint probabilities of character co-occurrence in the HIP. A HIP can use a) 
no language model (random equally likely occurrence of all possible 
combinations – Eg. Mailblocks, MSN, Register and Yahoo version 2), b) 
words from a dictionary (Yahoo! version 1), or c) a phonetic generator [8] 
(Ticketmaster and Google/Gmail).  

Each of these choices affects both HIP security and human-friendliness of the HIP 
though commonly to different degrees. 

 

                                                           
3 Solving a HIP need not require the segmentation and recognition problems to be solved sepa-

rately. 
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3   HIP Security 

Assessing the strength of a particular HIP is an approximate process at best. The 
strength of a HIP is determined by the cumulative effects of the HIP design choices. 
Each choice increases or decreases HIP difficulty and human-friendliness. However, 
comparing and quantifying contributions from each choice might not be possible as 
interactions between these choices can be non-linear. Some very general comments 
can however be made. In general, the larger the character set and the longer the HIP 
the stronger it is. In the absence of a language model, the strength of the HIP im-
proves exponentially with the length of the HIP and polynomially with the HIP char-
acter set size. Affine transformations, clutter, and image warp also increase HIP secu-
rity through not as dramatically. Background and foreground textures usually provide 
only a marginal improvement in HIP security. Using only words from a dictionary 
makes the HIP considerably easier to break. HIPs using phonetic generators also 
suffer from this drawback but to a lesser extent. The effects of using a dictionary or a 
phonetic generator are similar to reducing the effective character set size and HIP 
solution length.  

One direct approach to obtaining a quantitative upper bound for HIP security is to 
build automated HIP breakers and assess their success in solving particular HIPs. 
This is exactly the approach adopted here to assess HIP security for popular on-line 
HIPs [2,12]. 

3.1   Breaking HIPs 

Breaking HIPs is not new. Mori and Malik [7] have successfully broken the EZ-
Gimpy (92% success) and Gimpy (33% success) HIPs from CMU. Thayananthan et 
al [15] have also been successful at breaking EZ-Gimpy [4]. Recently Moy et al [16] 
have broken the purely distortion based HIP gimpy-r [4] with a success rate of 78%. 
Our approach aims at an automatic process for solving multiple HIPs with minimum 
human intervention, using machine learning. In this section, our main goal is to learn 
more about the common strengths and weaknesses of these HIPs rather than to prove 
that we can break any one HIP in particular with the highest possible success rate. We 
summarize results for six different HIPs: EZ-Gimpy/Yahoo, Yahoo v2, Mailblocks, 
Register, Ticketmaster, and Google. Further details on these HIP breakers can be 
found in [2,12]. 

To simplify our study, we will not be using language models in our attempt to 
break HIPs. For example, there are only about 561 words in the EZ-Gimpy dictionary 
[7], which means that a random guess attack would get a success rate of 1 in 561 
(more than enough to break the HIP, i.e., greater than 0.01% success). 

Our generic method for breaking all of these HIPs is to build a custom segmenta-
tion algorithm (to locate the characters) and then use machine learning for recogni-
tion. Surprisingly, segmentation, or finding the characters, is simple for many HIPs, 
which makes the process of breaking the HIP particularly easy. Gimpy uses a single 
constant predictable color (black) for letters even though the background color 
changes. We quickly realized that once the segmentation problem is solved, solving 
the HIP becomes a pure recognition problem, and it can be solved using machine 
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learning. Our recognition engine is based on convolutional neural networks [6,9]. It 
yielded a 0.4% error rate on the MNIST database, uses little memory, and is very fast 
for recognition.  Speed is important for breaking HIPs since it reduces the cost of 
automatic trials. 

For each HIP, we have a segmentation step, followed by a recognition step. It 
should be stressed that we are not trying to solve every HIP of a given type, i.e., our 
goal is not 100% success rate, but something efficient that can achieve much better 
than 0.01%. 

In each of the following HIP security experiments, 2500 HIPs were hand labeled 
and used as follows (a) recognition (1600 for training, 200 for validation, and 200 for 
testing), and (b) segmentation (500 for testing segmentation). For each of the five HIP 
types, a convolution neural network was trained and tested on gray level character 
images centered on the guessed character positions (see below). The convolutional 
neural network is identical to the one described in [6] and consisted of two layers of 
convolutional nodes followed by two fully connected layers. The output from each 
convolutional layer was subsampled by two before being fed to the next layer [6]. 
The architecture was exactly the same for all experiments in this paper. The trained 
neural network became the recognizer. Except for converting the original image to 
gray, no preprocessing of any kind was used for recognition. 

Mailblocks: To solve the HIP, we select the red channel, binarize and erode it, ex-
tract the largest connected components (CCs), and breakup CCs that are too large into 
two or three adjacent CCs. Further, vertically overlapping half character sized CCs 
are merged. The resulting rough segmentation works most of the time. One example 
is presented in Figure 3.  

 

    

=>      … 

Fig. 3. Breaking Mailblocks HIP. 

In the example above, the neural network would be trained, and tested on the seg-
mented chars (right). Each HIP has exactly 7 characters. The segmentation algorithm 
had a success rate of 88.8% and the neural network recognition rate was 95.9% for 
recognition (given correct segmentation). The total end-to-end success rate is given 
by seg_rate*(reco_rate)^(hip_length) = (0.888)*(0.959)7 = 66.2% 
total. Note that most of the errors come from segmentation, even though this is where 
all the custom programming was invested. 

Register: The procedure to solve HIPs is very similar. The image was smoothed, 
binarized, and the largest 5 connected components were identified. The success rate is 
95.4% for segmentation, 87.1% for recognition (given correct segmentation), and 
(0.954)*(0.871)5 = 47.8% total. One example is presented in Figure 4. 
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Fig. 4. Breaking Register HIP. 

Yahoo!/EZ-Gimpy: Unlike the mailblocks and register HIPs, the Yahoo/EZ-
Gimpy HIPs are richer in that a variety of backgrounds and clutter are possible. 
Though some amount of text warping is present, the text color, size, and font have 
low variability. Three simple segmentation algorithms were designed with associated 
rules to identify which algorithm to use. The goal was to keep these simple yet effec-
tive: 

a) No mesh: Convert to grayscale image, threshold to black and white, select 
large CCs with sizes close to HIP char sizes. Figure 5 shows one example. 

 

   
Fig. 5. Breaking Yahoo HIP: no mesh case. 

b) Black mesh: Convert to grayscale image, threshold to black and white, re-
move vertical and horizontal line pixels that don’t have neighboring pixels, 
select large CCs with sizes close to HIP char sizes. Figure 6 shows one ex-
ample. 

 

   
Fig. 6. Breaking Yahoo HIP: black mesh case. 

c) White mesh: Convert to grayscale image, threshold to black and white, add 
black pixels (in white line locations) if there exist neighboring pixels, select 
large CCs with sizes close to HIP char sizes. Figure 7 shows one example. 

 

   
Fig. 7. Breaking Yahoo HIP: black mesh case. 

Tests for black and white meshes were performed to determine which segmenta-
tion algorithm to use. The average length of a Yahoo HIP solution is 4.8 characters. 
The end-to-end success rate was 56.2% for segmentation (38.2% came from a), 
11.8% from b), and 6.2% from c), 90.3% for recognition (given correct segmenta-
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tion), and (0.562)*(0.903)4.8 = 34.4% total. Note that the same recognizer was used 
for all 3 scenarios. 

Ticketmaster: The procedure that solved the Yahoo HIP is fairly successful at 
solving some of the ticket master HIPs. These HIPs are characterized by cris-crossing 
lines at random angles clustered around 0, 45, 90, and 135 degrees. A multipronged 
attack as in the Yahoo case (section 3.3) has potential. In the interests of simplicity, a 
single attack was developed: Convert to grayscale, threshold to black and white, up-
sample image, dilate first then erode, select large CCs with sizes close to HIP char 
sizes. One example is presented in Figure 8. 

 

   
Fig. 8. Breaking Ticketmaster HIP. 

The dilate-erode combination causes the lines to be removed (along with any thin 
objects) but retains solid thick characters. This single attack is successful in achieving 
an end-to-end success rate of 16.6% for segmentation, the recognition rate was 82.3% 
(in spite of interfering lines), and (0.166)*(0.823)6.23 = 4.9% total. The average HIP 
solution length is 6.23 characters. 

Yahoo! (version 2): The second generation HIP from Yahoo had several changes: 
a) it did not use words from a dictionary or even use a phonetic generator, b) it uses 
only black and white colors, c) uses both letters and digits, and d) uses connected 
lines and arcs as clutter. The HIP is somewhat similar to the MSN/Passport HIP 
which does not use a dictionary, uses two colors, uses letters and digits, and back-
ground and foreground arcs as clutter. Unlike the MSN/Passport HIP, several differ-
ent fonts are used. A single segmentation attack was developed: Remove the 6 pixel 
border, up-sample, dilate first then erode, select large CCs with sizes close to HIP 
character sizes. The attack is practically identical to that used for the ticketmaster HIP 
with different preprocessing stages and slightly modified parameters. Figure 9 shows 
an example. 

 

  

 
Fig. 9. Breaking Yahoo! (version 2) HIP. 

This single attack is successful in achieving an end-to-end success rate of 58.4% 
for segmentation, the recognition rate was 95.2%, and (0.584)*(0.952)5 = 45.7% total. 
The average HIP solution length is 5 characters. 

Google/Gmail: The Google HIP is unique in that it uses only image warp as a 
means of distorting the characters. Similar to the MSN/Passport and Yahoo version 2 
HIPs, it is also two colors. The HIP characters are arranged close to one another (they 
often touch) and follow a curved baseline. The following very simple attack was used 
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to segment Google HIPs: Convert to grayscale, up-sample, threshold and separate 
connected components.  

 

a)   b)   

Fig. 10. Breaking Google HIP. 

This very simple attack gives an end-to-end success rate of 10.2% for segmenta-
tion, the recognition rate was 89.3%, giving (0.102)*(0.893)6.5 = 4.89% total prob-
ability of breaking a HIP. Average Google HIP solution length is 6.5 characters. This 
can be significantly improved upon by judicious use of dilate-erode attack. A direct 
application doesn’t do as well as it did on the ticketmaster and yahoo HIPs (because 
of the shear and warp of the baseline of the word). More successful and complicated 
attacks might estimate and counter the shear and warp of the baseline to achieve bet-
ter success rates. 

The above experiments show that using a very simple approach, even the strongest 
HIPs can be solved more often than 1 in 25 leaving us far from the 1 in 10,000 mark. 
While recognition success rates ranged from 82.3% (ticketmaster) to 95.9% (mail-
blocks), segmentation success rates ranged from 10.2% (Google) to 95.4% (Regis-
ter.com). Clearly, the segmentation problem is crucial in determining HIP security, 
while recognition of HIPs characters appears to be a solved problem.  

3.2   Single Character Recognition Using Machine Learning 

Interestingly, the recognition problems posed by the HIPs in Section 3.1 were specifi-
cally designed to fool off-the-shelf OCR systems (e.g. Scansoft’s OCR and several 
others [14]). However, as seen in Section 3.1 they can be effectively solved using a 
neural network that is trained on HIP characters. In this section we explore the abili-
ties of such a neural network [6] for solving single character recognition problems 
under a variety of distortions and clutter. These distortions are similar to those com-
monly employed in HIPs and are described below. In this study, to better understand 
the NN’s capabilities, the difficulty of the recognition problem is driven much higher 
than what would be deemed appropriate for use in a HIP. 

3.2.1   Single Character Recognition Using Machine Learning 
Character-based HIPs employ a set of character distortions to make them hard to 
OCR using computers. The basic character transformations include translation, rota-
tion (clockwise or counterclockwise), and scaling. Rotation is usually less than 45 
degrees to avoid converting a 6 into a 9, an M into a W etc. Examples of these distor-
tions are presented in figures 11, 12, and 13. 
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Fig. 11. Example of Plain Text (M7F47VWC) 

  

  

 
Fig. 12. Example of Translated Text, levels 10 (5MS9FVLL), 25 (3R2YAZ9X), and 40 
(C7AXBZZR) 

 

 

 
Fig. 13. Example of Rotation Text, levels 15 (PWVDYLVH), 30 (B5PYMMLB), and 45 
(GSB5776E) 

Both computers and humans find HIPs, using these three transformations, easy to 
solve. To increase the difficulty of computer-based OCR, we introduce two kinds of 
warp [17]: 
1. Global Warp: The global warp produces character-level, elastic deformations 

(Figure 14). It is obtained by generating a random displacement field followed by 
a low pass filter with an exponential decay [17]. The resulting displacement field 
is then applied to the image with interpolation. These appear to bend and stretch 
the given characters. The magnitude of the warp is proportional to the total dis-
placement distance of HIP image pixels. The purpose of these elastic deforma-
tions is to foil template matching algorithms.  

2. Local Warp: Local warp is intended to produce small ripples, waves, and elastic 
deformations along the pixels of the character, i.e., at the scale of the thickness of 
the characters, rather than the scale of the width and height of the character (Fig-
ure 15). The local warp deformations are generated in the same manner as the 
global warp deformations, by changing the low pass filter cut-off to a higher fre-
quency. The purpose of the local warp is to foil feature-based algorithms which 
may use character thickness or serif features to detect and recognize characters. 

Crisscrossing straight lines and arcs, background textures, and meshes in fore-
ground and background colors are common examples of clutter used in HIPs. In this 
paper, we used random arcs of different thicknesses as clutter.  
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Letter M under global warp 
=>  

Left to right, letter M with 
varying amounts of global 
warp 75, 120, 180, 240, 
300 respectively.      

Fig. 14. Character transformation under global warp. 

Letter M under local warp 
=>  

Left to right, letter M with 
varying amounts of local 
warp 20, 40, 60, and 80, 
respectively.     

Fig. 15. Character transformation under local warp. 

3.2.2 Single Character Recognition Using Machine Learning 
We carried out a series of experiments to determine the recognition rates of the neural 
network classifier under the above distortions and clutter. In each experiment, a total 
of 110,000 random characters were sampled using the distortion and clutter settings. 
90,000 characters were used for training and 10,000 were used for validation. Test 
error was computed over the remaining 10,000 characters. Thirty one characters from 
{A-Z, 0-9} were chosen. Five characters that can be easily confused were discarded. 
These were I, O, Q, 0, and 1. Characters were rendered in Times Roman font at font 
size 30.  

In this paper, distortion and clutter were added to HIPs in the following order a) 
characters were rendered at random locations (with translation and rotation), b) fore-
ground non-intersecting clutter (thick arcs that do not intersect) was rendered, c) 
foreground intersecting clutter (thin and thick foreground arcs that intersect), d) back-
ground intersecting clutter (thin and thick background arcs) and finally e) global and 
local warps were applied. 

 

 
Fig. 16. Example of Baseline rotation, translation and scale for studying local warp and arc 
clutter. 

The first three experiments studied rotation, global warp, and local warp in isola-
tion. In the first experiment, characters were rotated randomly over the range of -45 
to +45 degrees. In the second experiment, global warp was varied from 120 to 360 in 
steps of 60. For each setting a new neural network was trained. The third experiment 
studied recognition accuracy as local warp was varied from 20 to 80 in steps of 20. 
The fourth experiment was designed to explore the combined effect of simultaneously 
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using these distortions and to provide a baseline for clutter experiments. The baseline 
setting used 80% - 120% scaling (x-, y-, or both), -20 to +20 degrees of rotation, a 
global warp setting of 75, and a local warp setting of 20. The fourth experiment used 
the baseline setting and the local warp was varied from 20 to 80 in steps of 20.  

Single character neural network recognition results (on the test set) under different 
types of distortion are presented in Table 1. The NN accuracy was completely im-
mune to rotation (with zero percent error), followed by local and global warps. The 
highest error rate was 8.08% for a Global warp of 360. A marginal increase (less than 
2x) in the error rate is observed when multiple distortions are applied at moderate 
levels but the error rates still stay low (< 6%). With all error rates less than 10%, it is 
clear that the NN is very effective at recognizing characters even in the presence of 
significant distortions.  

Table 1. Computer single character recognition error rates for affine transformations and warp. 
The baseline setting uses 80% - 120% scaling (x-, y-, or both), -20 to +20 degrees of rotation, 
and a global warp setting of 75. 

Distortion (parameter range) Computer Error Rates 
Rotation (-45° to 45°) 0.00% 

Global warp (120, 180, 240, 300, 360) 0.04%, 0.29%, 2.40%, 4.81%, 8.08% 
Local warp (20, 40, 60, 80) 0.01%, 0.04%, 0.54%, 3.51% 

Local warp (20, 40, 60, 80) + Baseline 0.01%, 0.22%, 1.19%, 5.23% 

 
 
Experiments five through nine investigated single character computer recognition 

accuracies in the presence of baseline setting with varying degrees of arc clutter. 
Foreground arcs are rendered in the same color as characters and are designed to join 
adjacent HIP characters together. Background arcs are rendered in the background 
color and as such are designed to break up characters into disconnected pieces. Both 
foreground and background arcs are of constant thickness. Two levels of arc thick-
ness were chosen with thin arcs being 2 pixels wide and thick arcs being 4-5 pixels 
wide. The combination of thin and thick arcs were chosen to model the thin and thick 
portions of characters in the Times font. The number of arcs, Narcs, rendered on or 
around the character was determined by the arc density, D, using: 

2( / )arcsN ceil WH D S  (1) 

where W and H are the width and height of the HIP image, respectively. S is the font 
size and ceil is the ceiling function. Example 8-character HIPs using these distortions 
and clutter are presented in Section 4.1. One character HIPs were generated with the 
same margin as in these figures with a 40 pixel x 40 pixel image centered on the 
character being used for recognition. Single character recognition experiments used a 
single character rendered on a 90x50 HIP image at font size 30. 
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Table 2. Computer single character recognition error rates in the presence of clutter. The base-
line setting uses 80% - 120% scaling (x-, y-, or both), -20 to +20 degrees of rotation,  global 
warp at 75, and local warp at 20.  

Arc Density 
Type of Clutter 

0.5 1.0 1.5 2.0 2.5 

Thin Foreground Arcs + 
Baseline 0.04% 0.19% 0.75% 1.62% 3.07% 

Thick Foreground Arcs + 
Baseline 0.27% 2.08% 6.11% 22.95% 34.04% 

Thin Background Arcs + 
Baseline 0.00% 0.00% 0.01% 0.00% 0.06% 

Thick Background Arcs 
+ Baseline 0.01% 0.10% 0.19% 0.47% 1.16% 

Thick Non-intersecting 
Foreground Arcs + Baseline 0.16% 0.29% 0.36% 0.22% 0.30% 

Table 3. Sample images with thick foreground and background arcs. 

Arc Density 
Type of Clutter 

0.5 1.0 1.5 2.0 2.5 

Thick Foreground Arcs + 
Baseline      

Thick Background Arcs 
+ Baseline      

Thick Non-intersecting 
Foreground Arcs + Baseline      

 
 
Single character neural network recognition results on the test set are presented in 

Table 2. Interestingly, the neural network does best against thick background arcs and 
thick non-intersecting foreground arcs with error rates under 0.5%. The neural net-
work also does well in the presence of thin arcs (foreground and background) with 
error rates staying below 3.1% even when the arc density is as high as 2.5. In the 
presence of thick arcs, the neural network does well for arc densities up to 1.5, but 
dramatically deteriorates at higher densities. Table 3 presents examples of input im-
ages containing letter ‘M’ with thick foreground arcs at different arc densities. Images 
with thick non-intersecting arcs are also presented for reference. When arc density 
exceeds 1.5 for thick intersecting foreground arcs, significant parts of the character 
are lost making them unreadable. This explains the dramatic drop in neural network 
accuracy. These results clearly indicate that the neural network is very effective at 
recognizing characters even in the presence of significant arc clutter.  



Building Segmentation Based Human-Friendly Human Interaction Proofs (HIPs)           15 

4   Human-Friendly HIPs 

Human-friendliness of a HIP encompasses both a) the visual appeal and annoyance 
factor of a HIP, and also b) how well it utilizes the difference in ability between hu-
mans and machines at solving segmentation and recognition tasks. As in the case of 
HIP security, human-friendliness is affected by each of the HIP design choices (Sec-
tion 2.2) to different degrees. In general, the annoyance factor increases with increas-
ing HIP length. Most online HIPs do not use more than 8 characters. A dictionary of 
words or a phonetic generator can make it easy for humans to type in the HIP solution 
as if it were a pseudo-word. Also, phonetic generators may help in reducing transcrip-
tion and typing errors. Background and foreground textures and colors help blend the 
HIP image into the web page (or UI) theme and make it appear less intrusive or tax-
ing to the user.  

Many of the design choices that make HIPs human-friendly tend to reduce HIP se-
curity and vice versa. However, this is not always the case. Some attributes such as 
colors, textures, and anti-aliasing have negligible effect on security while they can 
significantly improve appeal. This might be the reason why MSN, Yahoo v2, and 
Google use two color HIPs (with varying gray levels). Further, human-friendliness 
can be affected by factors that have no impact on HIP security, such as the display 
size and color of the HIP image.  

4.1   HIP User Studies 

Human-friendliness is best studied through user studies with human participants. 
Three sets of user studies were conducted to understand human abilities in segment-
ing and recognizing characters in HIPs. The first set described in Section 4.1.1 ex-
plores human accuracy under rotation, scaling, local and global warp independently. 
The baseline combination of parameters with varying local warp levels was also 
added to the first set. The second and third sets explore human accuracy in the pres-
ence of foreground and background arc clutter and are described in Sections 4.1.2 and 
4.1.3, respectively. The studies were designed to be run electronically, allowing par-
ticipants to do the HIP recognition tasks from the comfort of their own offices. To 
improve efficiency of these user studies, 8-character HIPs were used. Human accu-
racy was defined as the percentage of characters correctly recognized. For example, 
for 8 character HIPs, getting on average 7 characters correct would imply an accuracy 
of 87.5 percent. The interested reader is referred to [18] for further details on these 
studies. 

As in the case of the computer OCR experiments (Section 3.2.2), parameter set-
tings were not limited to only those ranges that are useful for HIP design. Our goal 
was to understand human abilities across the board from settings where humans get 
almost 100% correct to those where they get less than 25% correct4. 

                                                           
4 For an 8-character HIP a 25% single character accuracy means that on average users can read 

about 2 out of the 8 characters in the HIP. 
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4.1.1   Human-Friendliness of Distortions 

Seventy six users were recruited to participate in the first set of experiments. All were 
employees at a large software company. Average age of the participants was 35.2 
(range of 22-54 years of age), 17 were female, and all but 12 had normal or corrected-
to-normal vision. In addition, 42 wore glasses or contacts of some kind. All but six of 
the participants had at least an undergraduate education. The HIP parameter settings 
and ranges were the same as in the computer experiments for distortion. Only one 
HIP was created at each parameter level, and each participant saw that same exact 
HIP in a predetermined, randomized order. The seven parameters tested in the first 
user study were plain (or undistorted) text, translated test, rotated text, scaled text, 
global warping, local warping, and local warping combined with all the previous 
parameters at baseline settings (i.e., local warp + baseline).  

A total of 68 8-character HIPs were presented to each subject. If the HIP was 
deemed to be unreadable by the participants, they could enter “unreadable” by press-
ing a button provided on the website for that trial. Each response provided by the 
participant was recorded. Total time to complete the experiment was approximately 
15 minutes. Sample HIPs from these user studies are presented below. The numbers 
in parentheses indicate the level.  

 
Plain, Translated, Rotated, and Scaled Text: Participants were very accurate at 

identifying the plain text letters (Figure 11). 73 participants recognized all letters 
perfectly, while 3 participants missed a single letter. We conjecture that these were 
transcription errors. The amount of translation was increased in nine steps from 0% to 
40% of the character size (Figure 12). Participants had a very high accuracy rate with 
translated text. The accuracy rate was 99% or above for all levels. We rotated text in 
ten incremental steps from 0 degrees to 45 degrees (Figure 13). Participants had a 
very high accuracy rate with rotated text. The accuracy rate was 99% or above for all 
levels. Scaled text is text that is stretched or compressed in the x-direction as well as 
in the y-direction. Text was scaled in eleven incremental steps from 0% to ±50%. 
Participants had a very high accuracy rate with scaled text. The accuracy rate was 
98% or above for all levels. 

 
Global warp: Global warp covers the entire eight-character HIP. We increased the 

amount of global warping in 11 incremental steps from 0 to 390, as shown in Figure 
18. Participants had a very high accuracy rate with levels of global warp up to level 
270. Accuracy drops off dramatically with more global warp. A One-Way ANOVA 
shows that accuracy is reliably different for levels of global warp, F(10,65) = 73.08, p 
< .001. Post-hoc tests show that the 0-270 levels of global warp are reliably different 
from the 300-390 levels of global warp at the p < .05 level, using Bonferroni correc-
tions for multiple tests in this and all following post-hocs. 
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Scaling  
(20, 35, 50) 

  

  

 
 

Global warp 
(180, 270, 360) 

  

  

 
 

Local warp 
(30, 55, 80) 

  

  

 
 

Local warp  
plus baseline 

(30, 80) 
 

 
Fig. 17. Example of Baseline rotation, translation and scale for studying local warp and arc 
clutter. 

Local warp: The local warp was incremented in 16 steps from 0 to 90, as shown 
in Figure 19. The local warp value indicates the magnitude of the local warp field and 
is proportional to the average movement of ink pixels in the HIP. Participants had a 
very high accuracy rate with levels of local warp up to level 45, and very poor accu-
racy at level 70 and above. A One-Way ANOVA shows that accuracy is reliably 
different for local warp levels, F(15,60) = 120.24, p < .001. Post-hoc tests indicate 
that levels 0-60 are reliably different from levels 65-90. 

Local warp plus baseline: The baseline setting is used and local warp is gradually 
increased. Participants had a high accuracy rate with local warp plus baseline up to 
level 55 of local warp, as shown in Figure 20. After level 50, accuracy decreased in 
gradual steps, as is shown in the figure. A One-Way ANOVA shows that accuracy is 
reliably different for different levels of local warp plus baseline, F(15,60) = 98.08, p 
< .001. Post-hoc tests show that levels 0-55 are reliably different from levels 70-90.  
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Fig. 18. Accuracy rate for global warp text 
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Fig. 19. Accuracy rate for local warp text 
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Fig. 20. Accuracy rate for local warp text with baseline 

4.1.2   Human-Friendliness of Foreground Clutter 
Twenty-nine more users from the same large software company were recruited for the 
second set of experiments. Average age of the participants was 35.2 (range of 26-54 
years of age), 10 were female, and 23/29 had normal or corrected-to-normal vision. In 
addition, 19 wore glasses or contacts of some kind. All but six of the participants had 
at least an undergraduate education. Despite the similarities in the profiles between 
participants in studies 1 and 2, only one participant participated in both studies. 
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Fig. 21. Accuracy rate for thin intersecting arcs 
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Fig. 22. Accuracy rate for thick intersecting arcs 
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Fig. 23. Accuracy rate for thick non-intersecting arcs 

The HIP parameter settings and ranges were similar to the ones in the computer 
experiments for clutter (Section 3.2.2). Only one HIP was created at each parameter 
level, and each participant saw that same exact HIP in a predetermined, randomized 
order. A total of 70 8-character HIPs with different types of arc clutter were presented 
to each subject. Other than the new HIP examples, all of details of the study were 
identical to Study 1. Sample HIPs from these user studies are presented in Figure 24. 

Thin arcs that intersect plus baseline: There are 14 levels of arcs ranging from 0 
to 36 arcs across the HIP, as shown in Figure 21. Participants had a high accuracy 
rate with thin arcs that intersect plus baseline, with accuracy above 90% for all but 
the highest number of arcs examined. A One-Way ANOVA shows that accuracy is 
reliably different for levels of thin arcs that intersect plus baseline, F(13,16) = 2.70, p 
< .01. Despite reliable main effects, post-hoc tests found no reliable differences be-
tween any two conditions. 
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Thin arcs that intersect 
plus baseline (18, 36) 

 

 

Thick arcs that intersect  
plus baseline (18, 36) 

 

 

Thick arcs that don’t intersect 
plus baseline (18,36) 

 

 

Fig. 24. Sample HIPs from user study 1. 

 
Thick arcs that intersect plus baseline: The baseline setting is combined with 14 

levels of thick arcs that cross over the HIP characters, as shown in Figure 22. The 
number of arcs used ranged from 0 to 36. Not surprisingly, thick arcs that intersect 
are also difficult for participants when the baseline distortions are also incorporated. 
A One-Way ANOVA shows that accuracy is reliably different, F(13,16) = 49.27, p < 
.001. Post-hoc tests show that levels 0-22 are reliably different from levels 27-36. 

 
Thick arcs that don’t intersect plus baseline: The baseline is combined with 14 

levels of thick arcs that do not cross over the HIP characters. The number of arcs used 
ranged from 0 to 36. Participants had a very high accuracy rates of 92% or above for 
all levels. The differences between levels of arcs was reliably different, F(13,16) = 
2.12, p < .05. Despite the reliable main effect, post-hoc tests did not find any reliable 
differences between any two conditions (Figure 23). 

4.1.3   Human-Friendliness of Background Clutter 
Thirty-eight more participants from the same large software company were recruited 
for the third set of experiments. Average age of the participants was 33.4 (range of 
22-57 years of age), nine were female, three were left-handed. All but five of the 
participants had at least an undergraduate education. Only one participant participated 
in one of the previous studies (study 2). The HIP parameter settings and ranges were 
similar to corresponding ones in the computer experiments (Table 3). A total of 12 8-
character HIPs with different types of arc clutter were presented to each subject. 
Other than the new HIP examples, all of details of the study were identical to Studies 
1 and 2. Sample HIPs from these studies are presented below 
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Thin background arcs plus 
baseline (27, 45) 

 

 

Thick background arcs  
plus baseline (18, 36) 

 

 
Fig. 25. Sample HIPs from user study 2. 

 
Thin background arcs with baseline: In this condition, a HIP with the baseline 

settings is combined with 6 levels of thin background arcs that cross over the HIP 
characters. As shown in figure 26, background arcs in general break up characters 
into disjoint pieces. The number of arcs used ranged from 0 to 54. A higher number 
of background arcs were used as only background arcs that intersect characters show 
up on the HIP image. Participants had a very high accuracy rate with thin background 
arcs plus the baseline warp. The accuracy rate was 99% or above for all levels . The 
differences between the numbers of arcs is not reliably different, F(5,32) = 1.42, p > 
.05. 

 
Thick background arcs with baseline: In this condition, a HIP with the baseline 

warp settings is combined with 6 levels of thick background arcs that cross over the 
HIP characters. Character breakup due to background arcs is more noticeable when 
thick arcs are used. The number of arcs used ranged from 0 to 54, as shown in Figure 
27. Participants had a very high accuracy rate with thick background arcs except at 
the highest setting (54 thick arcs). The accuracy rate was 95% or above for levels up 
to 27 thick arcs and above 80% for higher levels up to 45. At level 54 the accuracy 
drops below 25% as characters become unreadable.  
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Fig. 26. Accuracy rate for thin background arcs 



22           K. Chellapilla et al. 

 

0

0.2

0.4

0.6

0.8

1

9 18 27 36 45 54
Number of thick background arcs

p(c) 

 

Fig. 27. Accuracy rate for thick background arcs 

5   Building Better HIPs 

5.1   Lessons Learned 

The HIP breaking experiments have shown that many existing HIPs are pure recogni-
tion tasks and can be easily broken using machine learning. The stronger HIPs derive 
their strength from the segmentation part of the HIP challenge they pose, rather than 
the recognition problem. Recognition of characters in today’s HIPs (given correct 
segmentation) is possible with high accuracy using convolutional neural networks [6].  

Computer experiments on single character recognition have shown that neural net-
works effectively solve the recognition problem even when the distortion levels and 
clutter densities are driven very high. HIP user studies have shown that human 
recognition is good under translation, rotation, and scale variations with low to mod-
erate levels of local and global warp. The human ability to solve HIPs is also good in 
the presence of thin foreground arcs, thick non-intersecting foreground arcs and thin 
and thick background arcs. However, humans do not do well in the presence of mod-
erate to high levels of thick foreground arcs. Computers do relatively better in han-
dling thick foreground arcs but also deteriorate significantly at high densities. 

Comparing computer and human performance, we see that computers are better 
than humans at recognition (when segmentation is solved). One should note that the 
user studies (Section 4.1) required humans to solve both the segmentation and recog-
nition problems whereas single character computer recognition experiments (Section 
3.2) only required the neural network to solve the recognition problem5. In the distor-
tion experiments and at low clutter densities these two results can be directly com-
pared (as segmentation is trivial in these cases). However, at high distortion and clut-
ter densities such a comparison would not be valid. We plan to study these scenarios 
more directly in future experiments and HIP user studies.  

Segmentation is intrinsically difficult for both computers and humans because: 
1) Segmentation is computationally expensive. In order to find valid patterns, a 

recognizer must attempt recognition at many different candidate locations. 

                                                           
5 We do not expect human performance to improve significantly if characters were pre-

segmented. This is due to humans being extremely good at segmentation. 
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2) The segmentation function is complex. To segment successfully, the system 
must learn to identify which patterns are valid among the set of all possible 
valid and non-valid patterns. This task is intrinsically more difficult than 
classification because the space of input is considerably larger. Unlike the 
space of valid patterns, the space of non-valid patterns is typically too vast to 
sample. This is a problem for many learning algorithms which yield too 
many false positives when presented non-valid patterns. 

3) Identifying valid characters among a set of valid and invalid candidates is a 
combinatorial problem. For example, correctly identifying which 8 charac-
ters among 20 candidates (assuming 12 false positives), has a 1 in 125,970 
(20 choose 8) chances of success by random guessing. 

5.2   Segmentation Based HIPs 
We can use what we have learned to build better HIPs. The HIP in Figure 28 was 
designed to make segmentation difficult and a similar version has been deployed by 
MSN Passport for hotmail registrations. 

 

 

 

 

Fig. 28. Three samples of example segmentation HIP 1 (P6VGA73C, E96U5V9D, 
N9ZZKNTV). 

 

 

 

 

Fig. 29. Three samples of example segmentation HIP 2 (FMHYC9KT, M4EWRRAZ, 
PGMTGA4S). 

The idea is that the additional arcs are themselves good candidates for false charac-
ters. The previous segmentation attacks would fail on this HIP. Furthermore, simple 
changes of fonts, distortions, or arc types would require extensive work for the at-
tacker to adjust to. We believe HIPs that emphasize the segmentation problem, such 
as the above example, are much stronger than the HIPs we examined in this paper, 
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which rely on recognition being difficult. Pushing this to the extreme, we can easily 
generate HIPs shown in Figure 29. 

Despite the apparent difficulty of these HIPs, humans are surprisingly good at 
solving them, as suggested by  Figure 23, indicating that humans are far better than 
computers at segmentation (Section 5.3.2 has the details). This approach of adding 
several competing false positives can in principle be used to strengthen a HIP by 
posing difficult segmentation problems for hackers. 

5.2.1   Segmentation HIP Security 
To build an automatic segmentor, we could use the following procedure.  Label char-
acters based on their correct position and train a recognizer. Apply the trained recog-
nizer at all locations in the HIP image. Collect all candidate characters identified with 
high confidence by the recognizer. Compute the probability of each combination of 
candidates (going from left to right), and output the solution string with the highest 
probability. This is better illustrated with an example.  

 

 HIP 

 for K 

 for Y 

 for B 

 for 7 

 for 9 

 map 

Fig. 30. Neural network output and combined map 

Consider the HIP in Figure 30. After training a neural network with the above pro-
cedure, we have these maps (warm colors indicate recognition with high confidence) 
that show that K, Y, and so on are correctly identified. However, the maps for 7 and 9 
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show several false positives. In general, we would have a map for all the different 
candidates (see Figure 30).  

We note that there are several false positives for each true positive. The number of 
false positives per true positive character was found to be between 1 and 4, resulting 
in a 1 in C(16,8) = 12,870 to 1 in C(32,8) = 10,518,300 random chance of guessing 
the correct segmentation for the HIP characters. These numbers can be improved 
upon by constraining solution strings to flow sequentially from left to right and by 
restricting overlap. For each combination, we compute a probability by multiplying 
the 8 probabilities of the classifier for each position. The combination with the high-
est probability is proposed by the classifier. We do not have results for such an auto-
matic segmentor at this time. It is interesting to note that with such a method a classi-
fier that is robust to false positives would do far better than one that is not.  

5.2.2   Human-Friendliness of Segmentation Based HIPs 
One user study was conducted to determine human-friendliness of the segmentation 
based HIPs presented in figures 28 and 29. The same set of 38 users from section 
4.1.3 were used in these experiments. Ten eight-character HIPs of each type were 
used in the study. Other than the new HIP examples, all of details of the study were 
identical to the three user studies from Section 4.1. Participants had a very high accu-
racy rate for both segmentation based HIPs. Accuracy for HIP 1 was above 91% 
(Figure 28), while accuracy for segmentation HIP 2 was above 89% (Figure 29). 
Overall accuracy was slightly lower for segmentation HIP 2 examples, but the differ-
ence between the two was not statistically reliable, t(37) = 1.27, p = 0.21. The lack of 
any statistically significant difference indicates that both of these challenges are of 
somewhat equal difficulty to humans, though segmentation HIP 2 (Figure 29) poses a 
much harder segmentation problem for computers. 

6   Conclusion 

In this paper, we have successfully applied machine learning to investigate HIP secu-
rity and we studied human reading ability under distortions and clutter common to 
HIPs. We have learned that decomposing the HIP problem into segmentation and 
recognition greatly simplifies analysis. Recognition on even unprocessed images 
(given segmentation is solved) can be done automatically using neural networks. 
Further, the HIP user studies have shown that given correct segmentation, computers 
are much better at HIP character recognition than humans. Segmentation, on the other 
hand, is the difficulty differentiator between weaker and stronger HIPs. Preliminary 
user studies on segmentation based HIP indicate that humans are just as good at solv-
ing segmentation based HIPs as they are at solving recognition based HIPs. In light of 
these results, we propose that segmentation based reading challenges are the future 
for building stronger human-friendly HIPs. The contribution of this research is to 
continue to drive HIP design from a user-centered perspective, wherein we try to 
design for a “sweet spot” that maximizes the comfort of human solvers while mini-
mizing the ease of the code being broken through machine learning. 



26           K. Chellapilla et al. 

Acknowledgements 
We would like to acknowledge Chau Luu for her help with developing the website 
for the user studies.  We would also like to acknowledge Cem Paya, Erren Lester, 
Shannon Kallin, Julien Couvreur and Jonathan Wilkins in the MSN Passport team, 
for helping with the design, testing, and deployment of new segmentation based hu-
man-friendly HIPs.  Finally we would like to thank Josh Benaloh from the MSR 
crypto group for not letting us compromise security. 

References 

1.  Baird HS (1992), “Anatomy of a versatile page reader,” IEEE Proceedings, v.80, pp. 1059-
1065. 

2.  Chellapilla K, and Simard P, “Using Machine Learning to Break Visual Human Interaction 
Proofs (HIPs),” NIPS 2004, MIT Press. 

3.  First Workshop on Human Interactive Proofs, Palo Alto, CA, January 2002. 
4.  Von Ahn L, Blum M, and Langford J, The Captcha Project. http://www.captcha.net 
5.  Baird HS and Popat K (2002) “Human Interactive Proofs and Document Image Analysis,” 

Proc. IAPR 2002 Workshop on Document Analysis Systems, Princeton, NJ. 
6.  Simard PY, Steinkraus D, and Platt J, (2003) “Best Practice for Convolutional Neural Net-

works Applied to Visual Document Analysis,” in ICDAR’03, pp. 958-962, IEEE Computer 
Society, Los Alamitos. 

7.  Mori G and Malik J (2003), “Recognizing Objects in Adversarial Clutter: Breaking a Visual 
CAPTCHA,” CVPR’03, IEEE Computer Society, vol.1, pages:I-134 - I-141, 2003. 

8.  Chew M and Baird HS (2003), “BaffleText: a Human Interactive Proof,” Proc., 10th 
IS&T/SPIE Document Recognition & Retrieval Conf., Santa Clara, CA, Jan. 22. 

9.  LeCun Y, Bottou L, Bengio Y, and Haffner P, “Gradient-based learning applied to docu-
ment recognition,’ Proceedings of the IEEE, Nov. 1998. 

10. Selfridge OG. (1959). Pandemonium: A paradigm for learning. In Symposium in the 
mechanization of thought process (pp.513-526). London: HM Stationery Office. 

11. Pelli DG, Burns CW, Farrell B, and Moore DC, “Identifying letters.” (accepted) Vision 
Research. 

12. Goodman J and Rounthwaite R, “Stopping Outgoing Spam,” Proc. of the 5th ACM conf. on 
Electronic commerce, New York, NY. 2004. 

13. Baird HS and Luk M, “Protecting Websites with Reading-Based CAPTCHAs,” Second 
International Web Document Analysis Workshop (WDA'03); 2003 August 3; Edinburgh; 
Scotland. 

14. Coates AL, Baird HS, and Fateman RJ, “Pessimal Print: A Reverse Turing Test,” Sixth 
International Conference on Document Analysis and Recognition (ICDAR '01), September 
10 - 13, 2001, Seattle, WA. 

15. Thayananthan A, Stenger B, Torr PHS, Cipolla R, “Shape Context and Chamfer Matching 
in Cluttered Scenes,” CVPR (1) 2003: 127-133. 

16. Moy G, Jones N, Harkless C, Potter R, “Distortion Estimation Techniques in Solving Vis-
ual CAPTCHAs,” CVPR'04, Volume 2, pp. 23-28, June 27 - July 02, 2004, Washington, 
D.C., USA. 

17. Deriche R, “Fast Algorithms for Low-Level Vision”, IEEE Trans. on PAMI, 12(1), January 
1990, pp. 78-87. 

18. Chellapilla K, Larson K, Simard P, and Czerwinski M, “Designing Human Friendly Human 
Interaction Proofs (HIPs),” in Conference on Human factors In computing systems, CHI 
2005. ACM Press. 



A Highly Legible CAPTCHA
That Resists Segmentation Attacks

Henry S. Baird, Michael A. Moll, and Sui-Yu Wang

Computer Science & Engineering Dept
Lehigh University

19 Memorial Dr West
Bethlehem, PA 18017 USA

baird@cse.lehigh.edu, {mam7|syw2}@lehigh.edu
www.cse.lehigh.edu/˜baird

Abstract. A CAPTCHA which humans find to be highly legible and which is
designed to resist automatic character–segmentation attacks is described. As first
detailed in [BR05], these ‘ScatterType’ challenges are images of machine-print
text whose characters have been pseudorandomly cut into pieces which have then
been forced to drift apart. This scattering is designed to repel automatic segment-
then-recognize computer vision attacks. We report results from an analysis of data
from a human legibility trial with 57 volunteers that yielded 4275 CAPTCHA
challenges and responses. We have located an operating regime—ranges of the
parameters that control cutting and scattering—within which human legibility is
high (better than 95% correct) even though the degradations due to scattering
remain severe.

Keywords: CAPTCHAs, human interactive proofs, document image analysis, abuse
of web sites and services, human/machine discrimination, Turing tests, OCR perfor-
mance evaluation, document image degradations, legibility of text, segmentation, frag-
mentation, Gestalt perception, style-consistent recognition

1 Introduction

In 1997 Andrei Broder and his colleagues at the DEC Systems Research Center, de-
veloped a scheme to block the abusive automatic submission of URLs to the AltaVista
web-site [Bro01,LBBB01]. Their approach was to challenge a potential user to read an
image of printed text formed specially so that machine vision (OCR) systems could
not read it but humans still could. Since that time, inspired also by Alan Turing’s
1950 proposal of methods for validating claims of artificial intelligence [Tur50], many
such CAPTCHAs—Completely Automated Public Turing tests to tell Computers and
Humans Apart—have been developed, including CMU’s EZ-Gimpy [BAL00, HB01],
PARC’s PessimalPrint [CBF01] and BaffleText [CB03], Paypal’s CAPTCHA [Pay02],
Microsoft’s CAPTCHA [SSB03], and Lehigh’s ScatterType [BR05]. As discussed more
fully in [BR05], fully or partially successful attacks on some of these CAPTCHAs
have been reported. We and other CAPTCHA researchers believe that many, perhaps
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most, CAPTCHAs now in use are vulnerable to (possibly custom-tailored) prepro-
cessing that segments the words into characters, followed by off-the-shelf or slightly
customized OCR. These observations motivated us to investigate CAPTCHAs which
resist character–segmentation attacks. In [BR05] we first described the ScatterType
CAPTCHA, in which each character image is fragmented using horizontal and verti-
cal cuts, then the fragments are forced apart until it is no longer straightforward auto-
matically to reassemble them into characters. Our personal knowledge of the segment-
and-recognize capabilities of commercial OCR machines—as attested by hundreds of
failure cases discussed in [RNN99]—gives us confidence that they pose no threat to
ScatterType today or for the forseeable future. However, this is a conjecture that must
be tested (see the section on Future Work).

We do not apply image degradations such as blurring, thinning, and additive noise
(cf. [Bai02]) so that will not obscure style-specific shape minutiae in the fragments
such as stroke width, serif form, curve shape, which we speculate may account for
the remarkable human legibility of these pervasively damaged images. Experimental
data reported in [BR05] also showed that subjective ratings of difficulty were strongly
(and usefully) correlated with illegibility. Since then we have carried out a systematic
exploration of the legibility of ScatterType as a function of the generating parameters.
The principal new result is the identification of an operating regime within which human
legibility exceeds 95 per cent.

2 Synthesizing ScatterType Challenges

In this section we briefly review the generating parameters (a fuller discussion is in
[BR05]). ScatterType challenges are synthesized by pseudorandomly choosing: (a) a
text-string; (b) a typeface; and (c) cutting and scattering parameters.

The text strings were generated using the pseudorandom variable–length character
n-gram Markov model described in [CB03], and filtered using an English spelling list
to eliminate all but a few English words. In these trials, no word was ever used twice—
even with different subjects—to ensure that mere familiarity with the words would not
affect legibility. The typefaces used were twenty-one FreeType fonts.

Cutting and scattering are applied, separately to each character (more precisely,
to each character’s image within its own ’bounding box’). A scaling dimension (the
“base length”) is set equal to the height of the shortest character in the alphabet. Image
operations are performed pseudorandomly to each character separately, controlled by
the following parameters.

Cutting Fraction Each character’s bounding box image is cut into rectangular blocks
of size equal to this fraction of the base length. The resulting x & y cut fractions
are held constant across all characters in the string, but the offset locations of the
cuts are chosen randomly uniformly independently for each character.

Expansion Fraction Fragments are moved apart by this fraction of base length held
constant across all characters in the string.

Horizontal Scatter Each row of fragments (resulting from horizontal cutting) is moved
horizontally by a displacement chosen independently for each row: this displace-
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ment, expressed as a fraction of the base length, is distributed normally with a given
mean and standard error. Adjacent rows alternate left and right movements.

Vertical Scatter Each fragment within a row (resulting from vertical cutting) is moved
vertically by a displacement chosen randomly independently for each fragment: this
displacement, expressed as a fraction of the base length, is distributed normally
with a given mean and standard error. Adjacent fragments within a row alternate up
and down movements.

The resulting images are combined, governed by this final parameter:

Character Separation The images of cut-and-scattered characters are combined (by
pixel-wise Boolean OR) into a final text string image by locating them using the
original vertical coordinate of the bounding box center, but separating the boxes
horizontally by this fraction of the width of the narrower of the two adjacent char-
acters’ bounding boxes.

ScatterType Parameter Range used in Trial
Cut Fraction (both x & y) 0.25-0.40

Expansion Fraction (both x & y) 0.10-0.30
Horizontal Scatter Mean 0.0-0.40

Vertical Scatter Mean 0.0-0.20
Scatter Standard Error (both h & v) 0.50

Character Separation 0.0-0.15

Fig. 1. ScatterType parameter ranges selected for the human legibility trial.

3 Legibility Trial

Students, faculty, and staff in the Lehigh CSE Dept, and researchers at Avaya Labs Re-
search, were invited to attempt to read ScatterType challenges using ordinary browsers,
served by a PHP GUI backed by a MySQL database. A snapshot of the challenge page
is shown in Figure 2.

After reading the text and typing the text in, subjects rated the “difficulty level” from
“Easy” to “Impossible”.

4 Experimental Results

A total of 4275 ScatterType challenges were used in the human legibility trial: they
are illustrated in Figures 3-5, at three subjective levels of difficulty: “Easy,” medium
difficulty, and “Impossible.”

Human legibility—percentage of challenges correctly read—is summarized in Fig-
ure 6. Overall, human legibility averaged 53%, and exceeded 73% for the two easi-
est levels. Legibility was strongly correlated with subjective difficulty level, falling off
monotonically with increasing subjective difficulty (details in [BR05]).
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Fig. 2. An example of a ScatterType legibility trial challenge page. The Difficulty Level
radio buttons (marked ’Easy’ to ’Impossible) were colored Blue, Green, Yellow, Or-
ange, and Red. The text at the top of the page refers to the previously answered chal-
lenge.

Fig. 3. ScatterType challenges rated by subjects as “Easy” (difficulty level 1 out of 5).
All of these examples were read correctly: “aferatic,” “memari,” “heiwho,” “nampaign.”

Fig. 4. ScatterType challenges rated by subjects as being of medium difficulty (diffi-
culty level 3 out of 5). Only one of these examples was read correctly (correct/attempt):
“ovorch”/”overch”, “wouwould”, “adager”/“atlager”, “weland”/”wejund”.
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Fig. 5. ScatterType challenges rated by subjects as “Impossible” (diffi-
culty level 5 out of 5). None of these examples were read correctly (cor-
rect/attempt): “echaeva”/”acchown”, “gealthas”/”gualing”, “beadave”/”bothere”,
“engaberse”/”caquired”

Difficulty Level
ALL 1 2 3 4 5

Total challenges 4275 610 1056 1105 962 542
% correct answers 52.6 81.3 73.5 56.0 32.8 7.7

Fig. 6. Human reading performance as a function of the difficulty level that the subject
selected.

5 A Highly Legible Regime

We have systematically explored the improvements in legibility that can be expected
from judicious choices of generating parameters (distributions that control cutting and
scattering). We began our project with 4275 ScatterType challenges collected in the
human legibility trial. The overall legibility of that set (the fractions of challenges read
and typed correctly) was 53%.

We used Tin Kam Ho’s Mirage (http://cm.bell-labs.com/who/tkh/mirage/index.html)
data analysis tool. For each challenge, we loaded the generation input parameters, the
typeface used, the true word, the word guessed by user, the time taken by user to enter
the guess, and the user’s rating of subjective difficulty. We examined histograms and
scatter plots (colorcoded by subjective difficulty if read correctly, with black indicating
a mistake) of many single and paired features, looking for strong correlations with either
objective or subjective difficulty.

One of the first features examined was the cutting fraction (set equal in both x and
y directions), which had been coarsely discretized as either 0.25, 0.32, or 0.40. The
cutting fraction determines the size of the rectangular blocks each of the characters
bounding boxes are cut into. Therefore a smaller cutting fraction will result in more
cuts and more boxes which would seem to imply the smaller the cut fraction, the more
difficult the challenge should be to read. We created a Mirage histogram (Figure 7) with
the vertical cut fraction on the X axis: our hypothesis was confirmed since for the three
distributions of vertical cut fraction 0.25 was the only one to have more illegible than
legible samples.
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Fig. 7. Mirage histogram of difficulty levels (black marks mistakes) as a function of
the CutFraction parameter. The value 0.25 was the only one to have more illegible than
legible samples. Black indicates a reading mistake: for legible samples, the colors red,
orange, yellow, green, and blue indicate five subjective difficulty levels from “impossi-
ble” to “easy”.

We then created a scatter plot (Figure 8) with the mean horizontal scatter distance on
the x-axis and the mean vertical scatter distance on the y-axis. These features determine
how far each row of fragments (as created by the cutting fraction described above)
is displaced. The overall displacement is a positive random number that is distributed
normally with a mean and standard error. In this experiment we are considering just the
means which range between 0.0 and 0.40 horizontally and 0.0 and 0.20 vertically. The
scatter plot in Mirage strongly indicates a higher concentration of legible challenges in
the lower left hand part of the graph near the origin. Without normalizing the scales, we
initially estimate best performance would result by classifying all instances within an
Euclidean distance of 0.25 from the origin as legible.

Further exploration did not reveal any other features or pairs of features with strong
correlation (positive or negative) to legibility. Two other features that we examined
closely (though not within Mirage) are the font and character sets. As shown in an
earlier analysis [BR05], four fonts perform significantly worse than the rest, and some
characters were confused more frequently than others. The first step we took toward
locating a high-legibility regime was to limit the mean scatter distances (since those
parameters appeared to show the strongest correlation to legibility in our analysis using
Mirage). Consider parameter d, the Euclidean distance of an instance from the origin
of the scatter plot (Figure 8) of mean horizontal scatter distance versus mean vertical
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Fig. 8. Mirage scatter plot of the Mean Horizontal Scatter (X-axis) versus Mean Vertical
Scatter (Y-axis) parameters. Legible samples clustered strongly near the (0,0) origin.
Black indicates a reading mistake: for legible samples, the colors red, orange, yellow,
green, and blue indicate five subjective difficulty levels from “impossible” to “easy”.

scatter distance. Our initial estimate of setting d < 0.25 resulted in a 25% increase
(Figure 9), while still correctly classifying over one quarter of the challenges.

We then removed all cut fraction values equal to 0.25 for the reasons described
above. These results, however, sharply reduced the set of challenges classified while
improving legibility only slightly (Figure 7). However the evidence of worsening per-
formance when it was equal to 0.25 convinced us to omit this value of the parameter.
Our next step was to begin removing fonts and characters that did not perform well in
the trial. However, the analysis of font pruning in [BR05] showed that removing the
four worst fonts resulted in positive but insignificant increases in performance at all
subjective difficulty levels, especially for the two easiest levels. We repeated the analy-
sis of removing fonts, in combination with the reduction of the cut fraction and scatter
distances and verified that it did not have any correlation to improving legibility (Fig-
ure 9). Thus we guessed that pruning fonts was unlikely to help. (Later, after pruning
the worst performing characters, this hunch proved correct: pruning fonts in addition
caused a loss of legibility of four per cent.)

In the preliminary analysis in [BR05], removing the five characters with the highest
”confusability”(’q’, ’c’, ’i’, ’o’, and ’u’) brought us rapidly to above 90%. Combined
with our new restrictions, we achieved a legibility close to 93% (Figure 9).
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From this analysis we concluded that restricting mean scatter distances and pruning
the worst performing characters both are strongly positively correlated with legibil-
ity, while using larger cut fraction can be somewhat useful when combined with other
policies. Removing poorly performing fonts however seem to offer little benefit in in-
creasing legibility (at least in our ”simpler” parameter space).

We continued to experiment with features to see if it would be possible to drive the
legibility any higher. First we removed the next 3 worst performing characters (’z’, ’j’
and ’h’) and set d < 0.15 and removed cut fractions = 0.25 and increased legibility to
94.26% for 115 instances. Removing the next three most confused characters (’f’, ’n’
and ’l’) improved legibility to 95.00%, but for only 38 instances.

Taking another approach, we return to the original 5 characters removed and in-
stead continue to decrease the d threshold to 0.1 and manage to increase legibility even
further, and for more correctly classified instances than above, reaching legibility of
97.5

Obviously, a more systematic and careful study of the confusability of characters
is necessary to determine which have the greatest detrimental effect on legibility, but
we have shown that through removing a small subset of easily confusable characters
and manipulating the values two parameters from the original trials, legibility could be
raised with confidence to above 95%.

d Cut Fraction Fonts Removed Chars Removed Legibility Correct Instances
< 0.25 0.25 - 0.40 None None 0.697 1656
< 0.20 0.25 - 0.40 None None 0.755 1309
< 0.15 0.25 - 0.40 None None 0.815 809
< 0.25 0.32 - 0.40 None None 0.715 1278
< 0.20 0.32 - 0.40 None None 0.761 1001
< 0.15 0.32 - 0.40 None None 0.814 613
< 0.25 0.32 - 0.40 4 Worst None 0.744 1074
< 0.20 0.32 - 0.40 4 Worst None 0.780 893
< 0.15 0.32 - 0.40 4 Worst None 0.813 503
< 0.25 0.32 - 0.40 None Q, C, I, O, U 0.788 305
< 0.20 0.32 - 0.40 None Q, C, I, O, U 0.840 226
< 0.15 0.32 - 0.40 None Q, C, I, O, U 0.929 143
< 0.10 0.32 - 0.40 None Q, C, I, O, U 0.975 78

Fig. 9. Parameter ranges used to locate a high-legibility regime. d = Euclidean dis-
tance of an instance from origin of plot of mean horizontal scatter distance versus mean
vertical scatter distance.

6 A Negative Result on Image Complexity

We also investigated one way to construct classifiers for legibility in spaces determined
by features that can be extracted from the images of the challenges after they are gen-
erated. We tested the ’Perimetric Image Complexity’ metric that has been reported to
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be correlated negatively with legibility in the BaffleText trial [CB02]. But, as we will
briefly report, this image metric failed to predict illegibility of ScatterType challenges.

Perimetric Image Complexity is an easily computed feature of any bilevel (black
and white) image, as the ratio of the square of the perimeter over the black area, where
the perimeter is the length of the black/white boundary in pixels. High values correlate
positively with fragmentation. In ScatterType we observed many cases where a word
image was cut into a great number of pieces and yet remained legible. These cases were
numerous enough to vitiate the utility of this metric to predict legibility.

7 Generating New Trials

A first step toward conducting another experiment on the human legibility of these
images is to generate new trials with a parameter space constrained by our findings
from the first experiment. Words containing the five most confused characters from the
first trial were removed and the range for the cut fraction was reduced to 0.32 to 0.40.
This was done because the smaller the cut fraction, the more blocks each character is
cut into, and in the first experiments this corresponded to increasing difficulty. Also, all
parameters that had been coarsely discretized in the first experiment were now more
finely distributed (the number of levels for each parameters was increased to 100).

We first attempted to create trials of four different complexity levels, differentiated
solely by the scatter distances. This created four classes of trials, labeled as too hard,
hard, medium and easy. Upon inspecting the images generated from these parameters,
a clear, incremental increase in difficulty was obvious across all four classes, however
all of the classes seemed uniformly more difficult than anticipated. The easy class was
expected to be almost trivial to read, yet from simply looking at those trials, it was
obvious we would have to be very optimistic to expect the legibility of those trials to be
over 90

Realizing that simply limiting the scatter distances from the original experiment was
simply not enough to raise legibility as high as we hoped, we experimented with creat-
ing two more simpler classes, labeled as simple and trivial, by altering the parameters
for expansion fraction and cut fraction. In general, the larger the cut fraction becomes,
the fewer cuts that are placed in the character, and this should typically result in more
legible images, as long as the expansion fraction is also not too large. As expected, the
resulting class labeled simple was much easier to read, primarily because of fewer cuts
being made to the character, and the class labeled trivial, was very near to the original
plain text.

8 Discussion of Sample Images

The following six images illustrate the six subranges of parameters that we chose after
analysis of the first experiment. We have named these classes “trivial” (Figure 10),
“simple” (Figure 11), easy (Figure 12), “medium hard” (Figure 13), “hard” (Figure 14)
and “too hard” (Figure 15). These names are to some extent arbitrary, but they capture
our intuition about legibility within each subrange. This is a step towards understanding
the ScatterType parameter space well enough to allow us to generate challenges in real
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time possessing a specified difficulty. In the following six examples, the true word is
“telghby” and the font is Courier New Bold.

Fig. 10. A “Trivial” example, generated using a large cut fraction, a small expansion
fraction, and no overlap due to the character separation parameter. It is indeed highly
legible, so much so that some human readers might not suspect that it was a test of skill.

Fig. 11. A “Simple” example, generated with a cut fraction value that allows roughly
two or three cuts and a slightly larger expansion fraction than “trivial” cases. The char-
acters are also slightly less separated.

Fig. 12. An “Easy” example, generated with an expansion fraction greater than for
“simple” cases: but it is still easy to segment characters using vertical strokes within
wide white space channels. Note that the base of the letter ’h’ is starting to merge so
that it begins to resemble the letter ’b’: but we believe that for most readers it will be
obvious that they remain distinct characters.

As these Figures illustrate, from case to case there is a gradual but perceptible in-
crease in difficulty of these images. One potential problem with all six of these partic-
ular examples is that it does not seem difficult to segment the characters using vertical
cuts in large white spaces: of course this could make them more vulnerable to attack,
regardless of the degradation of the individual characters.

We have also selected examples that illustrate instructive and problematic aspects
of our approach: we discuss them below.
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Fig. 13. A “Medium Hard” example, generated using nearly the same parameters as in
the “easy” cases. The principal change is an increase in the scatter distance, which in
this example degrades legibility noticeably compared to Figure 12.

Fig. 14. A “Hard” example, generated using the same parameters as “medium hard”
cases, except that scatter distance has been increased. The letter ’t’ that starts the word
is now nearly obliterated. We can still distinguish ’h’ from ’b’ but it is now difficult to
tell which is which.

Fig. 15. A “Too Hard” example, generated using an even larger scatter distance than
for the “hard” cases. At this level of difficulty, words often become illegible. Note that
the letter ’b’ no longer seems to have an appropriate height.

Fig. 16. The correct word is “wexped”. This image has been generated using “easy”
parameters but it’s not highly legible. The cause appears to be small character separa-
tion, especially between ’e’,’x’ and ’p’. Without knowing the word, it seems difficult
to recover the ’x’. This illustrates the difficulty of achieving 100% legibility within the
current ScatterType parameter space.

Fig. 17. The correct word is “veral”. As in Figure 16 above, it has been scattered using
“easy” parameters, but in a different font. Despite small character separation it isn’t as
difficult to segment as the prior example. This illustrates the problematic fact that font
choice can dominate the effects of the scattering parameters, and in a manner that is
hard to predict.
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Fig. 18. The correct word is “tpassed”. This also was generated using “easy” parame-
ters. It’s interesting to see two ’s’ characters treated so differently within the same word.

Fig. 19. The correct word is “spental”. This was also generated using “easy” param-
eters, but this case happens to achieve the desirable characteristic of being difficult to
segment into characters. However, it is potentially ambiguous in its last three letters.

Fig. 20. The correct word is “neved”. It is generated using “easy” parameters, but char-
acters are easier to segment than the case in Figure 19. Note that each ’e’ is rendered
quite differently, and ’n’ seems implausibly “mirrored.”

Fig. 21. The correct word is “mempear”. Generated using easy parameters, it is difficult
to segment, but not because of small or negative character separation. Here, it’s due to
large expansion fraction and scatter distance operating within each character.

Fig. 22. The correct word is “wested”. Generated using “medium hard” parameters, the
larger scatter distance nearly destroys the legibility of the ’s’. Even small increases in
parameters can have large effects.
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Fig. 23. The correct word is “travame”. It was generated using only “medium hard”
parameters however, due to interactions with the chosen font, it is uncommonly difficult
to read (and to segment). This is another illustration of the interactions between scatter
parameters and font which are difficult to predict and control.

Fig. 24. The correct word is “wezre”. Generated using “too hard” parameters, it is
for the most part satisfactorily illegible. However it would not perhaps be difficult to
segment.

Fig. 25. The correct word is “thern”. Generated using “too hard” parameters, it is indeed
difficult to read, but easier than most other words generated with same parameters. Even
in the more difficult regions of the parameter space, the font chosen can make a large
difference in legibility.

After generating 100 sample images for each class and viewing them, we are con-
vinced that it will be necessary to give more careful consideration to the role that font
choice plays in legibility. After the first experiment, we concluded that the effect that
the worst performing fonts had was greatest on those images generated with the highest
subjective difficulty and for the more legible trials, the choice of font did not play as
large a part in determining subjective difficulty. While this still appears to hold, it is not
obvious that the least confused fonts actually do enhance legibility across all classes of
parameters used, as seen in (Figure 15), where using a subjectively easy font makes a
word generated with the “too hard” parameters almost legible.

We have seen a great deal of evidence that ScatterType is capable of generating
cases where automatic segmentation into characters would be highly problematic, while
the images remain legible. This desirable property is the result of two factors: small or
negative character separation of course, but also importantly large scatter distances and
expansion fractions. By judicious choice of parameters we now believe we can generate



40 H.S. Baird, M.A. Moll, and S.-Y. Wang

a high fraction of cases with this property, but we do not yet fully understand how to
guarantee it in all cases.

9 Discussion and Future Work

A systematic analysis of the first ScatterType human legibility trial data has identified an
operating regime—a combination of restrictions placed on generating parameters and
pruning of the character set—which achieves legibility better than 95%. Within that
regime we can pseudorandomly generate many millions of distinct ScatterType chal-
lenges. But the correlation of the generating parameters with these desirable properties
is weak and we have nearly exhausted our experimental data in locating this regime.
Future work to refine the characterization of this regime must await future legibility
trials, if only to replenish the data set.

We also hope to investigate a related question: how well can we automatically select
those that are likely to possess a given subjective difficulty level?

The fact that ScatterType amplifies certain character-pair confusions and not others
in an idiosyncratic way might be exploitable. If further study reveals that the distribution
of mistakes differ between human readers and machine vision systems, we may be able
to craft policies that forgive the mistakes that humans are prone to while red-flagging
machine mistakes.

One reviewer suggested that the Gestalt laws of continuity (of, e.g., straight and
curved lines perceived as continuos inspite of breaks) may go far to explain the point of
collapse of legibility. This deserves careful analysis.

Another reviewer suggested that since certain characters (e.g. ’c’, ’e’, and ’o’) are
more vulnerable to ScatterType degradations, they should be generated with restricted
range of parameters. This technique might alleviate the problem of generating a suffi-
cient number of nonsense words within a pruned alphabet.

Of course every CAPTCHA including ScatterType must be tested systematically
using the best available OCR engines, and should be offered to the research community
for attack by experimental machine vision methods.
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Abstract. By convention, CAPTCHA is an automated test that hu-
mans can pass but current computer programs can′t. In general, the
research on CAPTCHA and Human Interactive Proofs is focusing on
those recognition tasks that are harder for machines than for humans.
The recognition of unconstrained handwriting continues to be a difficult
task for computers and handwritten image analysis is still an unsolved
problem. Therefore, handwriting recognition provides a reasonable gap
between humans and machines that could be exploited and used for new
CAPTCHA challenges. In this paper we use handwritten word images
and explore Gestalt psychology to motivate our image transformations.
The deformation methods are individually described and results are pre-
sented and compared to other traditional handwritten image transforma-
tions. Several applications for Web services would find our handwritten
CAPTCHA an excellent biometric for online security and a way of de-
fending online services against abusive attacks.

1 Introduction

If you tried to get an email account with Yahoo or Hotmail you may have seen
a registration check in the form of an image, like a puzzle that needs to be deci-
phered in order to register for a free account. The reason for this is that typing
the characters from an image helps ensure that a person, not an automated pro-
gram, is completing the registration form. Currently this is an important issue
for online services due to increasing number of malicious programs that try to
register for a large number of free accounts using Internet services and then
use these accounts to cause problems for other users. Possible problems that
they may cause are sending junk e-mail messages or slowing down the service
by repeatedly signing in to multiple accounts simultaneously or causing denial
of services. In most cases, an automated registration computer program does
not recognize the characters in the image whereas humans should not have any
problem.

Now, how to prove that you are a human and not an automated computer
program over the Internet? The idea of proving humanity is not a new one. It
� Research supported in part by Calspan-UB Research Center, Buffalo, NY.
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is another formulation of Alan Turing′s old question: ”Can machine think?”.
In 1950 Turing proposed a way of testing whether machines can think through
experiments that involve interrogation on both human and computer and the
interrogator should be able to distinguish them accordingly [19]. In order to
make use of this concept for our purpose, a new formulation was defined and
the changes are that the interrogation is conducted by the computer and it is
also the grader. We name the tests administrated automatically by machines –
CAPTCHA (Completely Automatic Public Turing tests to tell Computers and
Humans Apart).

Looking for ways to distinguish between humans and computers, we have
found that the most trivial task that could differentiate them is handwriting
recognition. Understanding handwritten words is a common activity that hu-
mans perform effortlessly. However, making a computer to perform the same
task involves techniques from several areas, including pattern recognition, image
processing, computer vision, artificial intelligence, language understanding, and
psychology. As of now, handwriting recognition continues to be a challenge for
computers even that is the most common task for humans.

In this paper we describe how image analysis in general and handwritten
text images in particular could serve as challenges for machine and be used as
valid CAPTCHA puzzles. In our previous work we identified the problems with
a couple of machine printed text CAPTCHAs that have been already broken and
established handwritten word recognition as a better candidate for CAPTCHA.
We now wish to enrich our previous experiments and add a new point of view
that has proven to play an important role in handwriting recognition. Specif-
ically, we will make use of Gestalt Philosophy and use the perception laws to
create more sophisticated yet automatically image challenges. Our focus is on
automatic generation of CAPTCHA challenges (Fig. 1). Holistic features [12]
are investigated since they are widely believed to be inspired by psychological
studies of human reading.

Fig. 1. Example of interface and handwritten CAPTCHA to confirm registration
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2 Previous Work

The first known CAPTCHA was introduced on the AltaVista website to block
the abusive automatic submission of URLs [1]. Similar ideas and research efforts
on HIPs and CAPTCHAs have been made at the Carnegie Mellon University,
PARC and UC Berkeley either by creating CAPTCHAs or tools to break them
through [2,3,4,5,6,7,13,20]. So far, the CAPTCHAs currently in use take ad-
vantage of superior human ability in reading machine printed text, as well as
using speech and facial recognition [10,15]. Several current machine printed text
based CAPTCHAs have been already broken: Greg Mori and Jitendra Malik
of the UCB have written a program that can solve Ez-Gimpy with accuracy
83%; Thayananthan, Stenger, Torr, and Cipolla of the Cambridge vision group
have written a program that can achieve 93% correct recognition rate against
Ez-Gimpy, and Gabriel Moy, Nathan Jones, Curt Harkless, and Randy Potter of
Arete Associates have written a program that can achieve 78% accuracy against
Gimpy-R [5].

In this paper, we present handwritten word CAPTCHA that exploits the
gap between human and machine recognition of handwritten text. Handwrit-
ten text offers challenges that are rarely encountered in machine-printed text.
In addition, most problems faced in reading machine-printed text, for example
character recognition, word segmentation, or letter segmentation, are more se-
vere in handwritten text. Intuitively, the current sources of OCR errors lead to
the conclusion that handwritten word recognition would be the best candidate
for CAPTCHA for years to come. Our paper continues the effort in conducting
research on CAPTCHA using handwritten text challenges [16,17].

3 Technical Approach

The goal is to motivate our approach for creating the handwritten CAPTCHAs
from the cognitive point of view. We will make use of the features in the vi-
sual world and the laws that administrate it. A general feature extractor for
handwritten characters and words identifies for example the strokes (vertical,
horizontal), aspect ratio, holes, arcs, cross points, concavities, convexities etc.
By altering the characters and words we modify the feature mapping function
in the parametric space and try to eliminate or add features that otherwise map
closely together or break them apart in the parameter space for the characters
in the same or different class.

While in the past we focused on distortions and transformations that may
work in general for any type of images, in our current work we extend the research
on more elaborated techniques, underlining the inefficiency of handwritten word
recognition by machines in certain cases. In particular, we are interested to
analyze the recognition behavior when considering the holistic aspects used in
human reading. A good starting point to consider is the relationship with Gestalt
psychology.

Gestalt psychology is based on the observation that we often experience
things that are not part of our simple sensations. What we are seeing is believed
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to be an effect of the whole event, and not contained in the sum of the parts.
This concept resembles the holistic approaches that focus on recognizing the
entire word.

In perception, there are many organizing principles called gestalt laws [11].
They include the laws of closure, similarity, proximity, symmetry, continuity,
familiarity and figure-ground distinction (Fig. 2). Humans are amazing in per-
ceiving the object of interest: we tend to complete a figure in the way it should
be, if something is missing in an otherwise complete figure we will tend to close
it, fill the gap, we tend to group similar items together to see if there could form
a larger object, we imagine things that are close together as belonging together
etc. These laws are not restricted to perception only, it is just where they were
first noticed. An example of this kind is memory. For example, if you see an
irregular figure, it is likely that your memory will straighten it out for you a bit.
Or if you experience something that does not quite make sense you will tend
to remember it as having meaning that may not have been there. Also, internal
metric relations play a role as part of an outside iconic memory.

Fig. 2. Image analysis with gestalt laws as described by Gestalt Psychology of
Kurt Koffka. Common examples for figure-ground (a), proximity (b), familiarity
(c), continuity (d), symmetry (e), closure (f), similarity (g), and memory (h)

In contrast to human perception, currently the machines have no such abili-
ties (yet). Our task is to remove features or add non-textual strokes or noise to
a handwritten image in a systematic fashion based on Gestalt segmentation and
grouping principles in order to break machine recognition but preserve overall
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letter legibility and word recognition from features for humans. We started by
taking every law and applying it on handwritten strokes. We have found that
every law in particular could be translated into several methods that could be
used as valuable transformations on handwritten images. We used the following
set of candidate transforms to mimic these laws and tested them on handwritten
images:

Method 1: Create horizontal or vertical overlaps: for same words smaller dis-
tance overlaps, for different words bigger distance overlaps.

Gestalt laws: Law of proximity, symmetry, familiarity, continuity, background
(Fig. 3).

Fig. 3. Examples of handwritten images where OCR systems fail. The truth
words are: Silver Creek, New York, Lockport, Young America and W.Seneca

Method 2: Add occlusions by circles, rectangles, lines with random angles.
Gestalt laws: Law of closure, proximity, continuity (Fig. 4).

Fig. 4. Examples of handwritten images where OCR systems fail. The truth
words are: Los Angeles, Buffalo, Kenmore

Method 3: Add occlusions by waves (or thick lines) from left to right on entire
image, with various amplitudes or wavelength or rotate them by an angle.

Gestalt laws: Law of closure, proximity, continuity (Fig. 5).

Fig. 5. Examples of handwritten images where OCR systems fail. The truth
words are: Young America, Clinton, Blasdell

Method 4: Add occlusion using the same pixels as the foreground pixels (black
pixels), arcs, or lines.

Gestalt laws: Law of familiarity, background (Fig. 6).
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Fig. 6. Examples of handwritten images where OCR systems fail. The truth
words are: Rockport, Albany, Buffalo

Method 5: Change word orientation entirely, or the orientation for few letters
only.

Gestalt laws: Memory, internal metrics, familiarity of letters and letter ori-
entation (Fig. 7).

Fig. 7. Examples of handwritten images where OCR systems fail. Horizontal
mirror, vertical mirror, flip-flop. The truth words is: W.Seneca

We need to mention that all the methods described here would clearly work
for machine-printed text images, the same as the other methods described so far
in literature for machine-printed text images would work for handwritten text
images. However, the advantage of using handwriting is that most handwritten
text challenges are uniquely problematic and usually more severe than problems
encountered in recognizing machine-printed text. By using handwriting we are
adding more difficulties to the machine recognition task but we do not alter
the human recognition capabilities in any way since handwriting recognition is
the most common task for humans. To match human performance in machine
recognition of handwritten characters and words is not a straightforward task.
On the contrary, people can recognize characters of different sizes and rotations,
either handwritten or machine printed, by the time they are five years old, and
they maintain the same high performance level of recognition for confusing or
distorted handwritten text [14].

4 Testing Results

For our experiments, we used the two most advanced word recognizers available
at CEDAR: Word Model Recognizer (WMR) and Accuscript (HMM) [8,9,22].
Both recognizers use static lexicons in the recognition process. We applied trans-
formations on a set of about 4,100 handwritten city name images. We created
several new sets of transformed images, one set for each transformation previ-
ously described. We randomly chose some parameters values for our transfor-
mations and successively applied them on our handwritten test images. While
trying to make recognition harder by using various image transformations, we
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still work under the assumption that a valid lexicon is provided and that it
comprises all of the city names that we use in our tests.

We performed a series of tests by varying some parameters such as in the case
of first method where we tried for various displacements of overlap on vertical
and horizontal direction. We noticed that by increasing the displacement on
horizontal the error rate for machines increases but it also poses problems for
humans since visual segmentation becomes misleading as shown in Fig. 8.

Fig. 8. Original city name is Williamsville. If we increase the displacement too
much, then it becomes Wiilllliiamsvillllee

The accuracy achieved by handwriting recognizers is presented in Table 1.
The last method that illustrates the flip-flop transform was not tested due to
the nature of our recognizers, as well as the overlap of two different handwritten
words. Clearly the accuracy for these cases would be 0 if using our test recogniz-
ers, but we do not count these results yet since our current recognizers are not
trained for this kind of images. The most efficient methods based on our results
are duplicating the word on vertical or adding black occlusions such as waves,
lines, arcs. While computers have major difficulties in recognizing them, humans
have the least troubles with this kind of images. The gestalt law of differentiat-
ing between background and foreground holds in this case, and humans easily
continue the characters that are overlapped and eliminate the background noise.

Table 1. The accuracy of handwriting recognizers for current image transfor-
mations

Transformation WMR Accuracy Accuscript Accuracy

Horizontal Overlap Small 24.3% 2.9%

Horizontal Overlap Large 12.9% 2.4%

Vertical Overlap 27.8% 12.6%

Occlusion by wave 15.4% 10.5%

Occlusion by circles 35.9% 32.3%

Black Waves 16.3% 1.5%

For methods that consider hiding parts of images we considered several ways
of placing the occlusions (middle of image, or determine the part of the image,
middle, top or bottom, with the majority of black pixels and apply the occlusions
where we have larger concentration of black pixels, or less black pixels), and
also varying the size of occlusions (wave amplitude, wavelength, circle radius,
or number of circles per image). In our current tests we were more focused
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on the overall results for each kind of transformation, and getting a feeling
of which one works or not based on Gestalt assumptions and humans results,
rather than varying the parameters for a particular one. Although we did some
preliminary tests varying some parameters, we did not record a comparison
among them. However, we picked the most convenient constraints discovered
through experiments so far.

We observe that comparing against our previous results, some of the current
methods performs better for some recognizers (i.e. for horizontal overlaps, and
adding noise the form of black waves or lines). We shall explain here that the
other transformations previously considered (Table 2) [16,17], were adding lines,
grids, arcs, background noise, convolution masks and special filters, using vari-
able stroke width, slope, rotations, stretching, compressing, and using lexicon
challenges such as size, density, and availability. If we consider that with the
previous approach we used up to three image transformations for each test im-
age, then the new results may be considered better since we are using only one
transformation. Most probably, combining more than one transformation will
decrease the recognizers′ accuracy even more.

Table 2. The accuracy of handwriting recognizers with previous image trans-
formations

Word Recognizers Accuracy

WMR 9.2%

Accuscript 4.4%

Another point we need to clarify is that due to the randomness of some pa-
rameters of our transformations, we may end up with images with just small
areas affected by occlusions and mostly covering parts of the background. We
should explain that most of the images correctly recognized by our handwrit-
ing recognizers are falling in this category. Fig. 9 shows several images that
were correctly recognized but where the transformation chosen did not modify
the original image too much and therefore did not add enough challenge to the
recognition task. But on the other hand we have seen that for fairly clean images
with well chosen parameters for transformations the recognizers would have dif-
ficulties (Fig. 3 through Fig. 7). In our future tests we will consider this aspect
of the problem and try to eliminate those cases through a better selection of our
parameters and transformations.

Fig. 9. Examples of handwritten images that were recognized by one of our test-
ing recognizers. The truth words are: Albany, Young America, Lockport, Lewiston
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We administered random sets of about 60 images each to be recognized by
a number of 9 voluntary students from our department. The test consists of
about 10 handwritten images per each one of the 6 transformations previously
described. The images were chosen at random from the sets of about 4,100 de-
formed images per transformation. The human subjects were relatively familiar
with the words in the images since they are city names from the US Western
region. Our tests suggest that human performance depends on contextual known
or linguistic context, and prior knowledge of the word provides the greatest ad-
vantage to human readers, therefore memory and word familiarity as Gestalt
principles have proven to be valid clues for humans. Usually, if the original
handwritten sample was clean to begin with, after deformation it did not create
problems for humans to recognize the word, but machines failed. However, if
the original sample contained noise or was poor written or captured, then even
the original one caused problem to both human and computer, not to mention
after deformation. Therefore most of the human errors came from junk original
images rather than difficulties with the deformations applied on those images.
The human results are presented in Table 3 and we could conclude that vertical
overlaps and occlusions by white or black waves or lines are the least problem-
atic for humans. For occlusion by circles we could explain the lower accuracy
by imagining that some occlusions perhaps covered large part of a letter or the
entire letter, as well as for larger space between the words that overlap on hor-
izontal causing to misleading words as shown in a previous example (Fig. 8).

Table 3. The accuracy of human readers

Human All Horizontal Horizontal Vertical Occlusion Occlusion Black
Tests Deforms Overlap Overlap Overlap by waves by circles Waves

(Small) (Large)

Images 534 90 89 88 87 90 90

Accuracy 76.2% 76.6% 65.1% 87.5% 80.4% 67.7% 80.0%

Both humans′ and handwriting recognizers′ accuracy were computed as the
percentages of entirely recognized images. The CAPTCHA tests are fully graded
pass or fail, where pass is granted when all the characters of the word were
correctly recognized, and fail otherwise.

In general, the recognition of unconstrained handwriting is difficult because of
the great variability in writing styles, spacing between words and lines, character
sizes, and shape similarity. Different types of printing and background clarity also
add to this challenge [18]. Moreover, the accuracy of handwriting recognizers is
dependent upon the size and density of the lexicon, and mainly its availability
[21,23]. For our tests purpose and to give machines a fair shot, we consider here a
lexicon of size equal to the number of test images, containing all the truth words,
and we did not consider increasing the lexicon density. However, for a general
unconstrained example we should consider a large subset of English dictionary
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or the entire one, or move to the lexicon free approaches. In these cases, clearly
the recognizers accuracy would drastically further decrease.

5 Summary and Future Work

Evaluating our handwritten image challenges would reveal that they satisfy all
the requirements to be a CAPTCHA: i) there is no risk of image repetition since
the image generation is completely automated, the words, images and distor-
tions chosen at random; ii) the transformed images cannot be easily normalized
or rendered noise free by present computer programs (i.e. handwriting recogniz-
ers, OCRs), although original handwritten images must be public knowledge;
iii) the deformed images do not pose problems to humans, whereas the hand-
written CAPTCHA images remain unbroken by the state-of-the-art recognizers
throughout our tests. Therefore, our handwritten CAPTCHA could be success-
fully used as a biometric for online services to prove humanity and aliveness,
and to defend online services against malicious attacks.

We have described several new ways of creating Handwritten CAPTCHA.
Starting with the Gestalt psychology, we analyzed the image transformations
that use gestalt components and tested various sets of images on two handwrit-
ing recognizers. The results obtained so far have been encouraging, thus the
perspectives of even better results in the future are possible. We will reconsider
some of the transformations and vary the parameters or use a combination of
them in order to lower the recognizer accuracy. This kind of tests does not con-
tradict with the rules of automatic tests generated by computers since we always
ensure some level of randomness to be preserved. Some more work is needed for
tests on human subjects to determine how much is loosing in the recognition
rate for complicated (highly distorted) handwritten samples. Collecting clean
handwritten samples of high frequency words in English will be a priority in our
future research, since common used words are tided to visual memory and could
provide good hints for humans and be straightforward to read in most deformed
circumstances, but remain clueless for machines that do not make any difference
among words in English dictionary. Alternatively, we will consider constructing
handwritten word images by gluing together characters randomly chosen from
our sets of handwritten character images of isolated upper and lower case alpha-
bet. In addition, a handwriting distorter for generating manifold samples from
a handwritten word could be used to generate million of fresh different testing
images.
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Abstract. Web-based services designed for human users are being abused by 
computer programs (bots). This real-world issue has recently generated a new 
research area called Human Interactive Proofs (HIP), whose goal is to defend 
services from malicious attacks by differentiating bots from human users.   
During the past few years, while more than a dozen HIP systems have been de-
veloped, there is little user study been done in evaluating HIP’s ease of use and  
friendliness. In this paper, we first introduce a new HIP based on human face 
detection, and then report a comparative user study between this new face HIP 
and a more conventional character-based HIP.  Study results show that the us-
ers are almost equally divided in evaluating their overall ease of use. 

1   Introduction 

Web services are increasingly becoming part of people’s everyday life.  For example, 
we use free email accounts to send and receive emails; we use online polls to gather 
people’s opinion; and we use chat rooms to socialize with others. But all these Web 
services designed for human use are being abused by automated computer programs 
(bots). Malicious programmers have designed bots to register thousands of free email 
accounts every minute [1,3]. Bots have been used to cast votes in online polls [1]. 
Chat rooms and online shopping are being abused by bots as well [2, 7]. 

These real-world issues have recently generated a brand-new research area called 
Human Interactive Proofs (HIP), whose goal is to defend services from malicious 
attacks by differentiating bots from human users. The first idea related to HIP can be 
traced back to Naor who wrote an unpublished note in 1996 [7].  The first HIP system 
in action was developed in 1997 by researchers at Alta Vista [2].  Its goal was to 
prevent bots from adding URLs to the search engine to skew the search results.   In 
recent years, more than a dozen HIP algorithms and systems have been developed, 
most of which are based on characters [1,3].  These character-based HIPs are main 
streams in today’s commercial deployment, e.g., Yahoo, MSN Passport, etc. They 
mainly explore the gap between human and bots in terms of reading poorly printed or 
manipulated characters.  Figure 1 shows a character HIP used in MSN Passport, 
which consists of distorted characters and random arcs.  A user needs to recognize the 
characters and correctly types in the space below the HIP to prove he/she is a human. 
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Fig. 1.  An example character HIP 

The MSN Passport HIP is similar to other character HIP in that it uses distorted 
and manipulated texts.  However, it has an additional defense due to its segmentation 
difficulty, e.g., the arcs [4]. We will use this particular character HIP to represent the 
class of character HIPs in the rest of this paper. 

Character HIPs are the mostly widely used HIPs in today’s commercial sites, be-
cause of their ease of use, ease of implementation and universality.  The “universal-
ity” property requires a HIP to be usable by people from different countries.  An 
English-digit based audio HIP, for example, does not satisfy the universality property 
as people who do not understand English cannot use the HIP.  Universality is espe-
cially important in practice as it eliminates the localization effort for sites such as 
Yahoo or MSN. (See [8] for other good HIP properties).  

We recently developed a HIP, which is completely different from character HIPs, 
yet also satisfies the universality property.  This new HIP is based on human face and 
facial feature detection. In fact, it is even more universal than character HIPs, as peo-
ple all know human faces, regardless where they come from.  On the other hand, face 
detection and facial feature (e.g., eyes, mouth, nose, etc.) detection have been very 
difficult for machines, even after decades of research.  Non-frontal faces, asymmetri-
cal faces, dim/bright lighting conditions, and cluttered background make the task 
even more difficult for machines, while human have no problem in those situations. 
In [8], we reported detailed experiments on the robustness of the face HIP to mali-
cious attacks from the best face detectors [5,11,12] and facial feature detectors [9] 
available today.  Results show that the face HIP is robust at a rate of 2 out of a mil-
lion.  For details of the algorithms and attacks, the readers are referred to [8]. In this 
paper will concentrate on the use-friendliness aspect of the face HIP. 

The face HIP works as follows. Per each user request, it automatically synthesizes 
an image with a distorted face embedded in a clustered background. The user is asked 
to first find the face and then click on 4 points (2 eyes and 2 mouth corners) on the 
face. If the user can correctly identify these points, the face HIP concludes the user is 
a human; otherwise, the user is a machine.  

During the past few years, while more than a dozen HIP systems have been devel-
oped, there is little user study been done in evaluating HIP’s ease of use and friendli-
ness. But in reality, ease of use is as important as the robustness (to attack) of a HIP.  
Good user experience is becoming increasingly important as HIPs are not only used 
in one-time activities (e.g., registering an account), but also in recurring transactions 
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(e.g., challenge-response systems against spam). In this paper, we will report a com-
parative user study between this face HIP and the MSN character HIP.  Study results 
show that the users are almost equally divided between the two HIPs in terms of over-
all experience. The rest of the paper is organized as follows.  In Section 2, we 
describe the face HIP.  In Section 3, we discuss the user study design and methodol-
ogy.  We present the study results in Section 4 and give concluding remarks in Sec-
tion 5. 

2   The Face HIP 

The details on how to create the face HIP is reported in [8].  For completeness of this 
paper, we give a brief description of the HIP algorithm in this section.  

Human faces are arguably the most familiar object to humans, rendering it possibly 
the best candidate for HIP. Regardless of nationalities, culture differences or educa-
tional background, we all recognize human faces.  In fact, our ability is so good that 
we can recognize human faces even if they are distorted, partially occluded, or in bad 
lighting conditions.   

Computer vision researchers have long been interested in developing automated 
face detection algorithms. A good survey paper on this topic is [10].  In general face 
detection algorithms can be classified into four categories: knowledge-based, feature-
based, template matching, appearance-based. So far, the fourth approach is the most 
successful one [10]. 

In spite of decades of hard research on face and facial feature detection, today’s 
best detectors still suffer from several main limitations including the assumption that 
faces are symmetric, the difficulties of handling arbitrary head rotations, arbitrary 
lighting, and cluttered background. These conditions are among the most difficult 
cases for automated face detection, yet we human seldom have any problem under 
those conditions.  If we use the above 4 conditions to design a HIP test, it can take 
advantage of the large detection gap between human and machine.  Indeed, this gap 
motivates our design of the face HIP.   

  
(a)    (b) 

Fig. 2. (a) The 3D wire model of a generic head. (b) The cylindrical head texture map 
of an arbitrary person 
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We next use a concrete example to illustrate how to automatically generate a face 
HIP test image, taking into account of the 4 conditions discussed above.  For clarity, 
we use F to indicate a foreground object in an image, e.g., a face; B to indicate the 
background in an image; I to indicate the whole image (i.e., foreground and back-
ground); and T to indicate cylindrical texture map. 

[Procedure]  Generating a face HIP test image 

[Input] The only inputs to our algorithm are the 3D wire model of a generic head 
(see Figure 2 (a)) and a 512 x 512 cylindrical texture map Tm of an arbitrary person 
(see Figure 2 (b)).  Note that any person’s texture map will work in our system and 
from that single texture map we can in theory generate infinite number of test images. 

[Output] A 320 x 320 test image IF (see Figure 5) with ground truth (i.e., face loca-
tion and facial feature locations). 

 
1. Confusion texture map Tc generation 

This process takes advantage of the Cluttered Background limitation to design 
the HIP test. The 512 x 512 confusion texture map Tc (see Figure 3) is obtained 
by moving facial features (e.g., eyes, nose and mouth) in Figure 2 (b) to different 
places such that the “face” no longer looks like a face. 

 
2. Global head transformation 

Because we have the 3D wire model (see Figure 2 (a)), we can easily generate 
any global head transformations we want. Specifically, the transformations in-
clude translation, scaling, and rotation of the head. Translation controls where we 
want to position the head in the final image IF. Scaling controls the size of the 
head, and rotation can be around all the three x, y, and z axes. At run time, we 
randomly select the global head transformation parameters and apply them to the 
3D wire model texture-mapped with the input texture Tm. This process takes ad-
vantage of the Head Orientations limitation to design the HIP test. 

 

 
Fig. 3.  The confusion texture map Tc, is generated by randomly moving facial features 
(e.g., eyes, nose and mouth) in Fig 2 (b) to different places such that the “face” no 
longer looks like a face 
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3. Local facial feature deformations 
The local facial feature deformations are used to modify the facial feature posi-
tions so that they are slightly deviated from their original positions and shapes.  
This deformation process takes advantage of the Face Symmetry limitation to 
design the HIP test. Each geometric deformation is represented as a vector of 
vertex differences. We have designed a set of geometric deformations including 
the vertical and horizontal translations of the left eye, right eye, left eyebrow, 
right eyebrow, left mouth corner, and right mouth corner. Each geometric defor-
mation is associated with a random coefficient uniformly distribution in [-1, 1], 
which controls the amount of deformation to be applied. At run time, we ran-
domly select the geometric deformation coefficients and apply them to the 3D 
wire model. An example of a head after Steps 2 and 3 is shown in Figure 4 (a). 
Note that the head has been rotated and facial features deformed. 

4. Confusion texture map transformation and deformation 
In this step, we conduct exactly the same Steps 2 and 3 to the confusion texture 
map Tc, instead to Tm. This step generates the transformed and deformed confu-
sion head Fc as shown in Figure 4 (b). 
 

5. Stage-1 image I1 generation 
Use the confusion texture map Tc as the background B and use Fh as the fore-
ground to generate the 320 x 320 stage-1 image I1 [8]. 
 

6. Stage-2 image I2 generation 
Make L copies of randomly shrunk Tc and randomly put them into image I1 to 
generate the 320 x 320 stage-2 image I2 [8]. This process takes advantage of the 
Cluttered Background limitation to design the HIP test. Note that none of the 
copies should occlude the key face regions including eyes, nose and mouth. 
 

7. Final test image IF generation (Figure 5) 
There are three steps in this stage.  First, make M copies of the confusion head Fc 
and randomly put them into image I2. This step takes advantage of the Cluttered 

  
(a)    (b) 

Fig. 4. (a) The head after global transformation and facial feature deformation. We 
denote this head by Fh. (b) The confusion head after global transformation and facial 
feature deformation. We denote this head by Fc 
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Background limitation. Note that none of the copies should occlude the key face 
regions including eyes, nose and mouth. Second, we now have M+1 regions in 
the image, where M of them come from Fc and one from Fh. Let Avg(m), m = 0, 
…, M+1, be the average intensity of region m. We next re-map the intensities of 
each region m such that Avg(m)’s are uniformly distributed in [0,255] across the 
M+1 regions, i.e., some of the regions become darker and others become 
brighter. This step takes advantage of the Lighting and Shading limitation. 

The above 7 steps take the 4 face detection limitations into account and generate 
the face HIP test images that are very difficult for face detectors.   In [8], we reported 
detailed experiments on the robustness of the face HIP to malicious attacks from the 
best face detectors [5,11,12] and facial feature detectors [9] available today.  Results 
show that the face HIP is robust at a rate of 2 out of a million.   In the following sec-
tion, we will report another aspect of the HIP – its ease of use and friendliness. 

3   User Study Design and Methodology 

We recruited 200 panelists from an independent research panel.  To eliminate gender 
difference, the panelists are 50% male and 50% female.  They also have different 
levels of internet experience, ranging from beginner, to intermediate, to advanced.  
Furthermore, the panelists have diverse income levels to eliminate another potential 
bias factor. The panelists voluntarily participate in the user study online from their 
own homes.  This not only ensures that they do not need to change their regular 
online behavior, but also ensures that they are viewing the HIP images in the settings 
they would be most comfortable with, e.g., monitor type and size, screen resolution, 
contrast and brightness, etc. 

 
Fig. 5.  An example face HIP test image 



Characters or Faces: A User Study on Ease of Use for HIPs           59 

The section of user study on comparing HIPs is part of a larger-scale study that 
concerns with other issues in MSN Passport registration (see the study flow chart in 
Figure 6).  In the study before the HIP section, the panelists go through a regular 
MSN Passport registration process.  As a result, the section on comparing HIPs is in 
full context and the panelists already know how to register in Passport and understand 
the purpose of putting a HIP test inside the registration process. 

 
Fig. 6. The flow chart of the user study. The first part of the study is on Passport regis-
tration generic issues, which is outside the scope of this paper. The second part of the 
study is on comparing the two HIPs.  The first study does set up the context for the 
second study 
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In the study, we use two measures to evaluate each HIP’s performance, i.e., objec-
tive task performance, and subjective responses.  The latter includes asking various 
questions to the panelists. The list of questions and panelists’ responses are reported 
in detail in Section 4. The scenario of the objective task is at an MSN Passport 
registration page.  The panelists are given the following instructions: 

You may recall that at one point during the registration processes you've just 
evaluated, you were required to input some letters and numbers that were 
"distorted."  

This is a safety feature, the purpose of which is to prevent automated com-
puter programs from generating thousands of fake e-mail accounts in order 
to send unsolicited "spam" mail. Computers have a difficult time identifying 
distorted letters within an image.  

In the last 2 tasks we'd like you to take a closer look at this "character" dis-
tortion and compare it with an alternative "faces" distortion that has been 
developed. As you review both versions, please imagine that you are in the 
middle of a registration process, similar to those which you have just evalu-
ated. You do not need to fill out the registration form, simply evaluate the im-
ages. 

Specifically, the panelists are asked to conduct the following task: 

Without completing the registration form, please scroll down the page until 
you can see the image, then follow the instructions to interact with the im-
age appropriately. Make sure that you click the "next" button to cycle 
through the multiple images you will be shown.  

Figure 6. The flow chart of the user study. The first part of the study is on Passport 
registration generic issues, which is outside the scope of this paper. The second part 
of the study is on comparing the two HIPs.  The first study does set up the context for 
the second study. 

If a panelist can successful pass the HIP test, by clicking on the “next” button, 
he/she will be presented with a similar page, but with a different HIP image.  This 
process iterates for three (3) images.  Once the panelist correctly finishes the 3rd HIP 
image, he/she will be greeted with a “Congratulation/Confirmation” page, indicating 
that he/she has finished the task.  The group of 3 images can both be the character 
HIP and the face HIP.  This “objective task” gives us an objective way to see if a 
particular HIP is easy to use – the higher the percentage of the panelists who can 
reach the Confirmation page, the easier the HIP is. 

4   User Study Results 

After finishing the objective task, the panelist will then be given six (6) subjective 
questions.  For each question, the panelist selects a number from 1 to 7, 1 being the 
most “disagree” with the question, and 7 being the most “agree” with the question.  
For the ease of presenting results in the paper, we classify scales 1 and 2 being “Op-
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pose”, scales 3-5 being “Neutral”, and scales 6-7 being “Support”.  In addition to the 
above 1-7 scale answers, we also provide panelists with a field where they can enter 
free-form comments (see Figure 6). 

We next report the exact questions asked and the detailed results.  There are two 
types of questions.  Overall-quality questions (Q1, Q2, Q5 and Q6) evaluate the over-
all performance, e.g., ease of use, of a HIP.  On the other hand, specific questions (Q3 
and Q4) are designed to reveal more detailed findings. 

4.1   Overall Findings 

We classify the overall findings into two categories: “Ease of Use” and “If should 
Use”. The results on “Ease of Use” are summarized in Table 1. The following obser-
vations can be made. 

In the HIP comparison, users are split in terms of overall preference for the charac-
ters HIP and the face HIP.  The levels of Ease of Use are similar for the two HIPs, not 
only verified by the objective task but also the subjective responses. 

In fact, both Ease of Understanding Instructions (Q1: How difficult or easy was it 
to understand the instructions for interacting with the images?) and Ease of Perform-
ing Task (Q2: How difficult or easy was it to perform this task on the "faces" ver-
sion?) are similar for the two HIPs.   

Table 1.   Overall findings: Ease of Use   (* % based on responses of 6-7 on 7-point 
scales) 

Metric Character Face 

Objective task 
Success on task (reached confirmation 
page) 

80% 78% 

Ease of Understanding Instructions * 
Q1: How difficult or easy was it to un-
derstand the instructions for interacting 
with the images? (1 = Extremely difficult 
and 7 = Extremely easy) 

87% 82% 

Ease of Performing Task * 
Q2: How difficult or easy was it to per-
form this task on the "faces" version? (1 
= Extremely difficult and 7 = Extremely 
easy) 

78% 77% 
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There are two questions on “If should use”.  For question Q5: Between the charac-
ter HIP and the face HIP of the security feature you just reviewed, which one did 
you like better?, 53% prefer the face HIP and 47% prefer the character HIP – again, 
no significant difference between the two HIPs. 

For question Q6: In your opinion, should Microsoft .NET Passport use the "char-
acters"/”faces” version for users registering a Hotmail account? (1 = I would strongly 
oppose this and 7 = I would strongly support this), the results are listed in Table 2. 

As shown in Table 2, there are 7% users who oppose character HIP.  We speculate 
that these users either think the characters are too difficult to recognize or they don’t 
think HIP is necessary in general.  Additional research needs to be done to understand 
why 7% of users oppose character HIP. 

It is interesting to note that there are significantly more people who oppose face 
HIP.  From the interviews with the users, we find that some of the users who oppose 
face HIP think the distorted faces are offensive to them. There are another set of users 
who do not mind the images themselves, but they feel that the images might be offen-
sive to other people. How to design a face HIP so that it is visually less disturbing yet 
difficult for bots is an interesting problem. 

To summarize, although the panelists are almost equally divided on “Ease of use”, 
they have mixed comments on “If should use” -- while more panelists (53% vs. 47%) 
like the face HIP, more panelists (19% vs. 7%) oppose the idea of using it.   This 
interesting bi-modal distribution shows up again in “specific findings” in Section 
4.2.1.  We speculate that panelists like the face HIP because of the “seek and find 
then click” aspect of the task -- most panelists prefer clicking to typing.   Therefore, 
perhaps it is the nature of the task that is liked and not the specific stimulus. 

 

4.2   Specific Findings 

4.2.1   Pleasant or Not 

This question is designed to reveal if distortion (of characters/faces) will pose trouble 
on the panelists. Q3: How would you rate the images of the "faces"?  (1 = Very dis-
turbing and 7 = Very pleasant) 
 

Table 2.  Which HIP we should use 

Metric Support Neutral Oppose 
Character 56% 38% 7% 

Face 47% 34% 19% 
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Table 3.  Pleasant or not 

 
Pleasant 

(6-7) 
Neutral 
(3-5) 

Disturbing 
(1-2) 

Character 40% 48% 2% 
Face 39% 44% 17% 

 
17% panelist rated the face HIP as disturbing (1-2) while only 2% said the same 

for the character HIP. It is interesting that the panelists have a bi-modal distribution: 
while some commented that the faces were strange or eerie, other thought it was fun 
and interesting: 

Eerie: 
 “It is a bit eerie to look at.” 
 “It's a little freaky looking...kinda spooky.” 
 “Don't like it; disturbing.” 
 “The faces are very creepy.  The images look like severed heads.” 

Fun: 
 “It seems very effective and fun for kids.” 
 “It seems a really secure and it's fun to do also.” 
 “It was interesting, and kind of cool.” 
 “I found it entertaining and useful at the same time.” 

4.2.2   Size and Area 

We speculate that some panelists may think the areas of the HIP images maybe too 
big or too small.  Q4: How would you rate the area you had to click on the image? (1 
= Far too small and 7 = Far too large). The majority of panelists did not have an issue 
with the size / area of the characters or faces (see Table 4). 

Table 4.  Is the image size too large or too small 

 Too large Neutral Too small 

Character 21% 79% 1% 

Face 14% 84% 3% 
 

4.2.3   Difficulties with Both HIPs 

For the character HIP, majority found it easy to read; however, certain letters gave 
them trouble when lines ran across the image (see circled area in Figure 7) 
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 “The characters were easy to read, and the whole process was easy to com-
plete.” 

 “The H looks an awful lot like the N...especially when there is a line of some sort 
running through.” 

 “The F's and E's can be difficult to see with the lines through them.” 

For the face HIP, most users did not find it difficult to accomplish; also, some pan-
elists mentioned that they preferred clicking on the image to typing in the characters 

 “That was surprisingly much faster and easier.” 
 “It was fast and easy. I could see the face clear.” 
 “Quicker than having to type the characters.  Seems to be very easy.” 
 “This was much simpler than typing of characters.” 

5   Conclusions and Discussions 

In this paper, we reported a comparative user study between a character HIP and a 
new face HIP, and have the following major findings: 
 For the objective task, the panelists performed almost equally well for the two 

HIPs. 
 For “Ease of use”, the panelists rated both HIPs similarly on both the ease of 

performing the task and understanding the instruction of the task. 
 For “If should use”, while more panelists (53% vs. 47%) liked the face HIPs, 

there were also more panelists (19%  vs. 7%) opposes the idea of using it in Pass-
port registration page. 

 There was a bi-modal distribution in panelists when asking them if the face HIP 
images were pleasant.  While some thought the images were eerie, other thought 
they were fun. 

 Panelists thought the size/area of both HIP images were appropriate. 
 Some panelists thought the character HIPs were difficult to solve, and others 

prefer the face HIP (clicking) to character HIP (typing). 

As the state of art on OCR technology rapidly advances, it is becoming increas-
ingly difficult to design a character-based HIP that can be difficult for computers yet 
easy for humans. For example, the Gimpy HIP used at Yahoo site was broken by 
Mori and Malik [6], and an earlier version of MSN Passport HIP was also broken [4]. 
Given that face detection from images has been a difficult task for computer vision 
researchers for many decades, face detection and facial feature detection may be a 
better candidate for robust HIPs. 

 
Fig. 7.  An example where the character HIP can be difficult for human 
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While the new face HIP posses many attractive features, e.g., ease of use, univer-
sality, etc., some users thought it is eerie.  It will be an interesting research direction 
to design a HIP that has all the nice features of the current face HIP, yet is less dis-
turbing to sensitive users. 

6   Acknowledgement 

We would like to thank Vividence Research for helping conduct the user study. 

References 

1. Ahn, L., Blum, M., and Hopper, N. J., Telling humans and computers apart (Automati-
cally) or How lazy cryptographers do AI, Technical Report CMU-CS-02-117, February, 
2002 

2. AltaVista’s Add URL site: altavista.com/sites/addurl/newurl 
3. Baird, H.S., and Popat, K., Human Interactive Proofs and Document Image Analysis,'' 

Proc., 5th IAPR Workshop on Document Analysis Systems, Princeton, NJ, August 19-21, 
2002 

4. Chellapilla K., and Simard P., Using Machine Learning to Break Visual Human Interac-
tion Proofs (HIPs), Advances in Neural Information Processing Systems 17, Neural Infor-
mation Processing Systems (NIPS’2004), MIT Press. 

5. Colmenarez A. and Huang, T. S., Face detection with information-based maximum dis-
crimination, Proc. of IEEE CVPR, pp., 782-788, 1997 

6. Mori, G. and Malik , J., Recognizing objects in adversarial clutter: breaking a visual 
CAPTHA, CVPR 2003, pp. I 134-141. 

7. Naor, M., Verification of a human in the loop or identification via the Turing test, unpub-
lished notes, September 13, 1996 

8. Rui, Y. and Liu, Z., ARTiFACIAL: Automated Reverse Turing test using FACIAL fea-
tures, ACM/Springer Multimedia Systems Journal, May 2004  

9. Yan, S. C., Li, M. J., Zhang, H. J., and Cheng., Q. S., Ranking Prior Likelihoods for 
Bayesian Shape Localization Framework, Submitted to IEEE ICCV 2003. 

10. Yang, M., Kriegman, D., and Ahuja, N., Detecting faces in images: a survey, IEEE Trans. 
on Pattern analysis and machine intelligence, Vol. 24, No. 1, January 2002. 

11. Yang, M., Roth, D., and Ahuja, N., A SNoW-Based Face Detector, Advances in Neural 
Information Processing Systems 12 (NIPS 12), S.A. Solla, T.K. Leen and K.-R. Muller 
(eds), pp. 855--861, MIT Press, 2000. 

12. Zhang, Z., Zhu, L., Li, S. and Zhang, H, Real-time multiview face detection, Proc. Int’l 
Conf. Automatic Face and Gesture Recognition, pp. 149-154, 2002 



Collaborative Filtering CAPTCHAs

Monica Chew and J.D. Tygar�

University of California, Berkeley
{mmc,tygar}@cs.berkeley.edu

Abstract. Current CAPTCHAs require users to solve objective ques-
tions such as text recognition or image recognition. We propose a class
of CAPTCHAs based on collaborative filtering. Collaborative filtering
CAPTCHAs allow us to ask questions that have no absolute answer;
instead, the CAPTCHAs are graded by comparison to other people’s
answers. We analyze the security requirements of collaborative filtering
CAPTCHAs and find that although they are not ready to use now, col-
laborative filtering CAPTCHAs are worthy of further investigation.

1 Introduction

This paper proposes a framework for CAPTCHAs using collaborative filtering.
By observing real-world trends made by human subjects, collaborative filtering
CAPTCHAs attempt to extract complex patterns that reflect human choices.
For example, humans who like a particular joke, such as a subtle pun, may also
enjoy other jokes that incorporate similar patterns of whimsy, word-play, and
ironic observation. We consider the proposition that these patterns are suffi-
ciently complex that no computer agent can predict these patterns with equal
accuracy. While one might naively believe that detecting patterns of humor is
beyond the capability of any machine, we show in this paper that computer
agents can do better than one might at first think. We conduct an experiment
that demonstrates that joke-affinity CAPTCHAs can be weakly effective. Our re-
sults show that collaborative filtering CAPTCHAs, while not ready to use now,
show promise beyond traditional CAPTCHA approaches and deserve further
examination.

Why should we study collaborative filtering CAPTCHAs? Because current
CAPTCHA research resembles an arms race between CAPTCHA developers and
CAPTCHA attackers. CAPTCHA developers propose schemes which they hope
are unbreakable, and CAPTCHA attackers break them. The text-recognition
CAPTCHA EZ-Gimpy exemplifies this cycle [2]. EZ-Gimpy requires humans to
transcribe an image containing a single English word. In 2003, Mori and Ma-
lik broke EZ-Gimpy with 87% success [10]. The Mori-Malik attack requires a
dictionary. EZ-Gimpy designers then proposed a variation on EZ-Gimpy called
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Gimpy-R which uses random character strings instead of English text, thus de-
feating a dictionary attack. Moy et al. broke Gimpy-R in 2004 with 78% success,
and EZ-Gimpy using the same technique with 99% success [11].

Using collaborative filtering can make CAPTCHAs more difficult to break.
Suppose we can develop a CAPTCHA where the attacker must derive
CAPTCHA answers from other humans instead of solving an objective machine
vision question such as text recognition. In theory, the only way to break such a
CAPTCHA would be for the attacker to perform a user study and analyze the
results, a very expensive proposition.

This paper contains the following contributions:

– We propose a collaborative filtering framework for CAPTCHAs.
– We propose new attack models on collaborative filtering CAPTCHAs.
– We give security requirements for input data to collaborative filtering

CAPTCHAs.
– We present the results of an experiment on collaborative filtering

CAPTCHAs.
– We give a list of open problems for further examination.

Section 2 describes collaborative filtering and its challenges. Section 3 outlines
how to use collaborative filtering to build a CAPTCHA. Section 4 explains using
Singular Vector Decomposition to predict user ratings. Section 5 describes ex-
periments using the Jester dataset. Section 6 analyzes attacks on collaborative
filtering CAPTCHAs. Section 7 lists related work, and Section 8 concludes with
open problems.

2 Collaborative Filtering

Collaborative filters, or recommender systems, use a database of user preferences
to predict items or topics a new user might like or find useful [3, 14]. For example,
Amazon allows users to rate items for sale on a scale from 1 to 10. A new
user, Alice, is compared to existing users based on purchase or browsing history.
Amazon compares the user preferences of neighbors, or users who are historically
similar to Alice, to predict new items Alice might like and then recommends
them.

Challenges in collaborative filtering include:

– Accuracy. The prediction of Alice’s ratings must be accurate in order for
the recommendations to be useful. Additionally, in a collaborative filtering
CAPTCHA, inaccurate predictions will cause humans to fail the CAPTCHA.

– Sparsity. For very large recommender systems (e.g., Amazon, the Internet
Movie Database, and Ebay), even a very prolific user might have preference
data for a very small percentage of the items in the system. Sparsity makes
predictions more difficult.

– Scalability. Because nearest-neighbor algorithms (to find users with similar
preferences) scale in the number of users and items, very large recommender
systems suffer scalability problems.
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– “Polluted” data. Malicious or apathetic users may enter incorrect preference
data, hampering the accuracy of prediction algorithms. Dellarocas has done
some work in this area to reject “outliers” — however, this approach has
the unwanted effect of unfairly rejecting users with eccentric tastes [5]. In
general, the collaborative filtering research concentrates on improving the
predictive accuracy in the absence of adversaries, so this challenge is not
well-studied in comparison with the rest.

In this work, we are primarily concerned with accuracy and polluted data.

3 Collaborative Filtering CAPTCHAs

Previous CAPTCHAs require users to solve cognitive tasks such as text recog-
nition and image recognition. Both of these tasks are currently subjects of ma-
chine vision research. Sophisticated machine vision attacks exist for text-based
CAPTCHAs; it is only reasonable to expect the machine vision community to
make progress in image recognition if these CAPTCHAs are adopted.

What if we could use challenge questions that have no absolute answer? Then
we could build a CAPTCHA where the user is correct so long as enough known
humans agree. Collaborative filtering allows us to do so. Collaborative filtering is
a way to aggregate data from many different human users so that we can easily
compare new data. The collaborative filtering approach differs from previous
approaches in that the CAPTCHA designer does not know the correct answer
initially, but measures the correct answer from human opinions. There are many
subjective topics we could use to build a CAPTCHA: however, finding a good
source of input data is an open problem for reasons we discuss below.

3.1 Sources of Data

To build a collaborative filtering CAPTCHA, we require a source of data that
evokes some aspect of our humanity that is difficult to quantify. For example:

– Humans recognize quality in art (such as movies, music, literature, or im-
ages), and computers do not.

– Art (visual art, music) evokes human emotion which may be unpredictable
by computers.

– Humans have philosophical leanings (political opinions, religious doctrines,
etc.) which are difficult to codify.

– Humans recognize humor in jokes, and computers do not.

Choosing a good source of data is difficult. For example, building a
CAPTCHA out of movie ratings presents two problems: movies are time-
consuming and expensive for users to watch and rate, and online oracles such as
the Internet Movie Database can be used by adversaries. Cultural bias can also
plague collaborative filtering CAPTCHAs: the filter may only make accurate
predictions for certain demographic groups. However, all existing CAPTCHAs
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(including those based on text and images) discriminate against a some de-
mographic. Visually impaired or illiterate people cannot pass a reading-based
CAPTCHA, for example.

3.2 Stages of the CAPTCHA

Given an appropriate topic that computers find difficult to evaluate, we can
construct a CAPTCHA based on collaborative filtering. A collaborative filtering
CAPTCHA goes through several phases:

– Training. In the training phase, a group of known humans rates documents
in the gauge set. The seed data or training data will be used to generate
predictions for new user who wish to take the CAPTCHA.

– Testing. The testing phase is entered whenever a new user wants to take
a CAPTCHA. Suppose Alice wants to take the CAPTCHA. We present a
strict subset of documents in the gauge set for Alice to rate. Based on Alice’s
ratings of the subset and the training data, we make predictions for Alice’s
ratings of the remainder of the gauge set. Alice then rates the remainder of
the gauge set. We now have actual and predicted ratings for the remainder
of the set. If the predicted ratings are close enough to the actual ratings,
Alice passes. The threshold for passing is an open research problem.

– Reseeding. If Alice passes as human, the CAPTCHA enters the reseeding
phase. Alice rates new documents that are not in the gauge set. If enough
new users rate these documents, the new documents can be used as a new
gauge set. Having dynamic data in the collaborative filter is important; rec-
ommendations and predictions of a small, static dataset are subject to attack.

Now we turn to the question of predicting ratings.

4 Using Singular Value Decomposition in Collaborative
Filtering

Singular Value Decomposition (SVD) is a numerical method for doing collabo-
rative filtering that separates user ratings by different features. A feature is an
abstract notion that falls implicitly out of the decomposition; features require no
special annotations in advance. Often, but not always, an abstract feature in the
SVD corresponds to a real-world property of the item being rated. For example,
one property of jokes is word-play. Users who find word-play humorous might
prefer puns, and the word-play property might correspond to a particular feature
in the decomposition. For the purposes of this experiment, the real properties
corresponding to the features are irrelevant.

If the ratings matrix A holds ratings of users for documents, we can use SVD
to decompose A: A = USV T . Aij is user i’s rating of document j. It is useful
to think of a row in U as a user’s response vector, where Uik is user i’s response
to feature k. S is the matrix of feature weights, or how important a feature is
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in determining the rating. S is 0 everywhere but the diagonal, where Skk is the
weight of feature k. V represents the amount of each feature in each document,
so Vjk is the amount of feature k in document j. Since Si�=j = 0,

Aij =
∑

k

UikSkkVjk

Because of the way the SVD is computed, the first entry in S is the largest,
so S11 � S22 � . . . � Snn. From this, we can estimate the ratings for a new
user if we know that user’s rating of the first document, R1. From the previous
equation, ignoring the new user’s responses to other features, we have

R1 = U1S11V11

We can then solve for U1, the user’s response to feature 1, and use that
to estimate the ratings of other documents. As more ratings are known, the
more feature responses we can estimate, and the more accurate the predictions
become.

4.1 Measuring Error

The Mean Absolute Error is the error metric used most often in collaborative
filtering literature. Let c be the number of jokes rated, pij be the prediction of
user i’s rating of joke j, and rij be the actual rating. Then MAE for user i is

MAE =
1
c

c∑
j=1

|rij − pij |

It is useful to normalize this metric to the range of possible ratings,
[rmax, rmin] [7].

NMAE =
MAE

rmax − rmin

4.2 Neighbors

Nearest-neighbor algorithms are commonly used to improve predictions using
SVD. One way to measure how similar two user preferences are is to measure
the distance between their preference vectors. Two users A and B are close if
the cosine between their preference vectors is close to 1.

cos θ =
A · B

‖A‖‖B‖
One immediate problem with using nearest-neighbor algorithms in a

CAPTCHA is that an adversary has fewer data points to guess in order to
cheat successfully. We discuss security problems in more detail in Section 6.
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5 Experiments with Collaborative Filtering CAPTCHAs

We have presented a class of CAPTCHAs based on collaborative filtering and
shown how to implement them. In this section, we conduct two experiments and
analyze the security requirements of collaborative filtering CAPTCHAs based
on the results.

5.1 A Joke-Based Collaborative Filtering CAPTCHA

We chose to prototype a proof-of-concept collaborative filtering CAPTCHA
based on jokes. The subject of jokes was chosen merely for convenience because
a large dataset of joke ratings is publically available [6].

While the choice of jokes as the basis for our collaborative filter allowed
us to prototype our system quickly, a collaborative filter based on jokes also
suffers from a number of flaws. Jokes are often culturally biased, they are hard
to generate by computer, and some jokes are offensive. As we discuss below,
despite these drawbacks, the use of a joke-based collaborative filter did produce
some interesting results and suggests that collaborative filtering deserves further
research as an approach for building CAPTCHAs.

There are several possible approaches using jokes to build a CAPTCHA:

– Pick the best joke from a small set.
– Pick the worst joke from a small set.
– Rate the joke.

The third approach, rating the joke, is the most useful because it is the
most general — the other two can be implemented based on the rating. If the
user’s assessment of the joke corresponds to the opinions of previous (human)
users, the user passes the challenge. We can then optionally ask the user to
rate new jokes and update the collaborative filter. Because this is a proof-of-
concept CAPTCHA and because, to the best of our knowledge, this is the first
collaborative filtering CAPTCHA, this experiment concentrated mainly on the
accuracy of the collaborative filter.

The Jester project The Jester project is a recommender system for jokes [6].
24953 users in the system rated the same 10 jokes, or gauge set, on a scale from
-10 (not funny) to 10 (funniest). Although up to 100 jokes were rated, we used
only ratings from jokes in the gauge set in this experiment because the gauge
set is dense.

To mitigate attacks on the collaborative filter, the data that users rate must
fulfill two requirements:

– It must be large or renewable. The Jester system uses 100 jokes. It is possible
to compose more jokes, however. If the data is too small, an adversary could
simply use a human to rate all the jokes and “replay” known human answers.
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– It must be uniformly distributed in quality. If the data does not follow a
uniform distribution, an adversary could simply guess the most frequently-
occurring rating.

Because neither of these requirements have an effect on the accuracy of pre-
dictions for legitimate users, we can disregard them for the purposes of predicting
ratings.

5.2 Experiments with the Jester Dataset

In this experiment, we use ratings from the first eight jokes in the gauge set to
predict ratings for the last two. We chose at random 100 users from 24953 to use
as the training set. This training data was used to compute the feature weight
and document matrices (S and V ) in the SVD. Recall that S gives the weight
of each feature, and V gives the amount of each feature in each document or
joke. Because the training data is dense, small and fixed in this experiment, we
avoided the problems of sparsity and scalability described in Section 2. Polluted
data will always be a challenge in collaborative filtering CAPTCHAs — there
is a trade-off between resistance to adversaries and unfairly failing users with
unconventional preferences.

For the other 24853 users (the test data), we used the S and V matrices
to predict the ratings of the last two jokes based on the ratings of the first 8.
Additionally, all the ratings were normalized linearly to fall between 0 and 1.

Because initial accuracy of the CAPTCHA in distinguishing humans from
machines does not depend on the third phase (reseeding) in a collaborative fil-
tering CAPTCHA, reseeding is unimplemented.

Results The results of using all the training data without nearest neighbor
algorithms to predict ratings for new users are shown in Figures 1 and 2. Figure 1
is a histogram of the cosine between the predicted ratings and the actual ratings
for the last two jokes in the gauge set. Figure 2 shows the histogram of the NMAE
for the predictions. The NMAE for a random prediction (distributed uniformly
over the range) is 0.333 [7]. The NMAE using all the training data for predictions
is 0.45, even higher than the expected NMAE for a random prediction.

Unfortunately, using the SVD decomposition of all 100 users in the training
data was too inaccurate. Because there is much variation in joke preferences, the
predictions were not good using all of the training data.

To improve predictions, we used only the ratings from the 10 nearest neigh-
bors. For each user in the test set, we compared the user ratings for the first 8
jokes to all of the training data, using the cosine as the metric to find the 10
nearest neighbors. The SVD on the 10 nearest neighbors was used to predict the
user’s ratings for the remaining 2 jokes in the gauge set. Figures 4 and 3 show
the results with nearest neighbor.

Figures 4 and 3 show that using nearest neighbors improves the predictions
significantly. The NMAE with nearest-neighbor is 0.34, approximately the same
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Fig. 1. A histogram of absolute values of cosines between predicted and actual
ratings using SVD without nearest neighbor.

as the expected NMAE for random predictions. The NMAE is 0.187 using Eigen-
taste, the collaborative filtering algorithm developed by the designers of the
Jester system [7]. The Eigentaste system uses Principal Component Analysis
(PCA) in lieu of SVD. PCA allows dimensionality reduction for fast offline clus-
tering of user preferences. Because this is a proof-of-concept CAPTCHA and the
training data is small, PCA is unimplemented.

5.3 Visual Art and Emotions

In this section we describe a speculative collaborative filtering CAPTCHA that
requires humans to specify emotions evoked by visual images. One measure for
comparing emotions is the Russell circumplex model of affect, illustrated in Fig-
ure 5 [13]. The two principal axes are excitement and pleasure. Russell claimed
these axes are orthogonal. For example, the emotion distress implies high ex-
citement and displeasure, and so distress falls in the upper left quadrant of the
model. However, low excitement and displeasure correspond to depression in the
lower left quadrant. Emotions that are close to each other on the model are
perceptually similar to humans, and vice versa. Opposite, or most dissimilar,
emotions are diagonal to each other on the model [12].

To devise a CAPTCHA, we can require the user to rate the emotions of
images as before and compare the predicted rating to the actual rating. However,
SVD assumes a linear scale, not a circular one. As a first step, we can simply
use the average rating (or emotion) to predict the rating of a new user, treating
emotions as vectors on the unit circle.
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Fig. 2. A histogram of NMAE using SVD without nearest neighbor.

In a small experiment, we chose seven images from an online art gallery,
and three random art images. A random art image is simply the result of col-
oring a random expression in two variables, where the color at a point (x, y) is
determined by the value of the expression at that coordinate, as illustrated in
Figure 6. Random art is a convenient source of input data to the collaborative
filter because it is easy to generate.

Four test subjects chose emotions that best corresponded to the image. How-
ever, many of the images were not sufficiently evocative. All of the subjects had
difficulty labelling the random art images. Additionally, the four test subjects
differed widely on all but one image, where three out of four picked emotions in
the same quadrant. Consequently, the average answers were not very meaning-
ful. The result of this small experiment is that the data source that humans rate
must be evocative. We also need numerical methods for collaborative filtering
that work on higher-dimension scales.

6 Security Against Adversaries

Collaborative filtering CAPTCHAs are predicated on the unpredictability of
human opinions. This condition could fail in several scenarios:

– The attacker (human or machine) infiltrates the training data. Then, to pass
the CAPTCHA, the attacker can simply rate the gauge set as she did during
the training phase. If training users complete the training phase remotely,
we can require them to pass another type of CAPTCHA (e.g., an image
recognition CAPTCHA) before entering the training phase.
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Fig. 3. A histogram of absolute values of cosines between predicted ratings and
actual ratings from the SVD predictions with nearest neighbor.

– There is not enough variation in the jokes, i.e., the jokes are consistently no
good (or conversely, the jokes are all very funny). In this case, the attacker
simply rates each joke the average rating (which is predictable for a small
number of jokes) to achieve a lower NMAE than random ratings. To defend
against this attack, the ratings of the jokes in the gauge set must be uni-
formly distributed. The training phase can accomplish this by starting out
with a large gauge set and eliminating jokes until the ratings are uniformly
distributed. Similarly, in the reseeding phase, only new jokes that preserve
the distribution are admitted to the gauge set.

– The attacker guesses a response vector that is consistent with the training
data. The attacker then uses the reseeding phase to infiltrate the new gauge
set. Of the attacks listed, this is the most insidious. The defense against this
attack can include:

• Introducing new jokes very frequently, so the gauge set is constantly
changing.

• Increasing the size of the gauge set.

From the experiments discussed in the previous section, there are several
requirements on the data used for collaborative filtering:

– Uniform. Ratings for the data must be uniformly distributed. If the ratings
show a bias (as in the case for the Jester dataset), an attacker can use that
bias to pass more often than would be expected at random.
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Fig. 4. A histogram of NMAE using nearest neighbor predictions.

– Evocative. The data must be sufficiently evocative. In the case of the
CAPTCHA outlined in Section 5.3, the emotional effect of the images used
was often unclear to the participants, diminishing the meaning of the ratings.

– Dynamic. The data must be renewable, or else the same data will appear to
an attacker many times. In this case, a correct guess from the attacker will
be very valuable, since the attacker can replay it many times.

Another important consideration is that collaborative filtering without using
nearest neighbor algorithms failed. The purpose of predicting ratings with the
entire training set instead of a subset was to amplify the difficulty of attack.
Guessing or controlling the SVD of the entire training set is more difficult than
doing the same for a small number of neighbors.

6.1 Exploiting Bias in Ratings

Let X be the user’s ratings, Y be the predicted ratings, and [rmin, rmax] be the
range of ratings. In this section, we derive the NMAE between X and Y for
three cases:

1. X and Y are uniform random variables. The NMAE for this case is presented
in the Jester paper, but we generalize the derivation and show it to be
independent of the range [7].

2. X and Y are normally distributed with mean μ and variances σ2
x and σ2

y ,
respectively. The analysis of this case is summarized from the Jester paper.

3. X is normally distributed with mean μ and variance σ2, Y = μ. This com-
parison has not been presented previously.
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Fig. 5. Russell’s circumplex model of emotion.

Uniform distribution Let X and Y be uniform random variables. The probability
distribution of the error function X −Y is triangular, ranging from [rmin, rmax],
where f(x) = x+20 for rmin ≤ x ≤ 0, and f(x) = 20−x for 0 ≤ x ≤ rmax. The
probability distribution of the absolute error |X − Y | gives the density function
for the MAE. Taking the absolute value folds the function over the y-axis, giving
the f(x) = 20 − x. Normalizing to integrate to 1, f(x) = 0.1 − 0.005x. Taking
the integral gives E[MAE] to be

∫ rmax

rmin

f(x)xdx =
∫ rmax

rmin

0.1x − 0.005x2dx =
rmax − rmin

3

Normalizing the MAE to the range gives NMAE=0.333, as expected.

Normal distribution Let X and Y be normally distributed random variables with
mean μ and variances σ2

x and σ2
y, respectively We can use the moment-generating

function to model their difference [8]:

MX−Y (t) = MX(t)M−Y (t) = e
1
2σ2

xt2+μte
1
2 σ2

yt2−μt = e
1
2 (σ2

x+σ2
y)t2

Thus, the difference is also a normal distribution with mean 0 and variance
σ2

x + σ2
y. The density function for the MAE |X − Y | is then

f(x) =
2√

2π(σ2
x + σ2

y)
e−x2/(2(σ2

x+σ2
y))
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Fig. 6. A random art image.

Suppose σx = σy = σ. Then E[MAE] is
∫ ∞

0

1
σ
√

π
e−x2/4σ2

xdx =
2σ√

π

Normalizing to the range gives an NMAE of 2σ√
π(rmax−rmin)

.

Normal X, constant Y Let X be normally distributed with variance σ2 and
mean μ, and Y = μ. Then the density function is exactly the standard normal
distribution with mean 0 and variance σ2, and the expected MAE is

∫ ∞

0

2√
2πσ

e−x2/2σ2
xdx =

√
2σ√
π

Normalizing to the range gives an NMAE of
√

2σ√
π(rmax−rmin)

. In the Jester
data set, the average standard deviation is σ ≈ 5, and the range is 20. Table 1
below summarizes the NMAE for different prediction models.

From Table 1, we can see that guessing the mean is almost as good a predictor
as SVD. The cost of this attack is finding the mean. The adversary can do this
by using a human to rate many documents, and estimating the mean from that
distribution. The number of ratings needed to make a good estimate of the mean
depending on the variance of the ratings. To be 90% confident that the true mean
is within 3% of the sample mean in the Jester data set, the attacker would need
to rate about 187 documents with σ = 5 and a range of 20:
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Table 1. Normalized Mean Absolute Error (NMAE) for different prediction
models.

Distribution E[NMAE] Jester NMAE

Uniform random 0.33 0.33
Normal 2√

π(rmax−rmin)
σ 0.28

Uniform mean
√

2√
π(rmax−rmin)

σ 0.20

Eigentaste — 0.187
SVD without clustering — 0.45
SVD with clustering — 0.34

n =
(

zα/2σ

.03(rmax − rmin)

)2

= 187

This attack is simple and effective. To prevent it, a combination of a uniform
distribution of ratings and better predictive algorithms is required.

7 Related Work

The ESP Game A related CAPTCHA-like scheme is the ESP Game developed
at CMU [17]. The ESP Game requires two simultaneous users to label 15 images
identically within 2 minutes. Moreover, there is a set of “taboo” words that both
players are forbidden to use. The ESP Game is not described as a CAPTCHA.
One approach to build a CAPTCHA out of the ESP Game would be to accept
both players as human if they won the game.

The ESP Game is like a collaborative filtering CAPTCHA in that user data
is used to grade the CAPTCHA; however, it requires online interaction, perfect
matching between players, and only one other user’s data is used to grade the
CAPTCHA. Because the ESP Game was not designed as CAPTCHA, it is not
surprising that using it as a CAPTCHA would result in a number of problems.
These problems include:

– Latency. The ESP Game requires online interaction, so multiple players must
simultaneously play the game. In addition, the time to take the ESP game
depends on other players, who may be behind a slow network connection
or malicious. A collaborative filtering CAPTCHA does not require online
interaction with other human users.

– Collusion. Only two colluding players are necessary to fool the system. An
adversary can automatically enter the game multiple times until she is paired
with herself; then, winning the game is trivially easy. Furthermore, such an
attack leads to pollution of the answer database, which is used to label images
correctly in an image recognition CAPTCHA. In a collaborative filtering
scheme, an adversary must work with her nearest neighbors.
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– Unfairness. An adversary can automatically cause a legitimate player to lose
by simply entering nonsense answers. In a collaborative filtering scheme, such
an adversary would simply fail the CAPTCHA.

A more general approach to collaborative filtering CAPTCHAs sidesteps
some of these problems.

Turing Game The Turing Game designed by Berman and Bruckman is one such
test, though it is not a CAPTCHA because it is not automated. In the Turing
game, the players are separated into the panelists and the audience [1]. The
panelists pretend to be members of a particular group (such as women), and the
audience of diverse gender asks questions of the panel. After the questioning,
audience members vote on who is telling the truth.

SparkLife SparkLife (community.sparknotes.com) takes a different approach.
It asks a series of fixed, multiple choice questions to determine attributes such
as gender, intelligence, all-American-ness, stress level, and greed [15]. The algo-
rithms used for analyzing the answers are not publically known.

8 Discussion

We have proposed a framework for collaborative filtering CAPTCHAs and per-
formed a preliminary security analysis of attack models on the filter. We have
shown that collaborative filtering CAPTCHAs require nearest neighbor algo-
rithms to be useful. We have proposed a scheme for updating the collaborative
filter to resist attacks and discussed security considerations for the data used in
the filter.

The results of the experiments are inconclusive — however, they indicate
that collaborative filtering CAPTCHAs are worthy of further investigation.

Open problems include:

– Finding an automatically renewable source of data that users can rate. Jokes
must be conceived by humans, for example, but random art images are easy
for machines to generate. The problem with random art images, however, is
that they may not be sufficiently evocative (Section 5.3).

– Specialized collaborative filtering CAPTCHAs that are targeted at a specific
demographic or group of people. Specialized knowledge could aid collabora-
tive filtering CAPTCHAs. For example, a particular dataset (e.g., jokes) elic-
its different responses from different personality types or demographics. An
affinity for puns might indicate linguists, or lingo-philes. A CAPTCHA based
on movie data (e.g., user ratings and genre information from the MovieLens
project) could target movie buffs [9].

– Using collaborative filtering to improve data sources for other CAPTCHAs.
Image recognition CAPTCHAs require a human user to recognize im-
ages [2, 4, 16]. Image recognition CAPTCHAs have the problem of mis-
labelling: images in the database are indexed under meaningless labels [4].
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Chew and Tygar describe CAPTCHAs requiring three tasks: naming the
image by typing the label, distinguishing images, and identifying the anoma-
lous image out of a set. Because all images are culled from Google’s image
database, not all of the images are labelled correctly. The mislabelling prob-
lem causes humans to fail CAPTCHAs. We can use collaborative filtering to
eliminate or reduce poorly labelled images.
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Abstract.  We present an implementation of CAPTCHA image generation as a 
REST-style web service, currently available at http://captchaservice.org.  We 
argue that CAPTCHA generation is well suited to a web services approach, 
particularly one powered by open-source code, and discuss techniques for using 
such a service to protect weblogs from comment spam attacks. 

We describe the captchservice.org API by example, and detail the workings 
of the two image-distortion techniques that the service offers.  We also discuss 
accessibility objections to visual CAPTCHAs, describe our early attempts at 
non-visual alternatives, and summarize future development directions. 
 

1 Motivation 

In several arenas, providers and good-faith users of Internet services are at war with 
spammers who try to benefit by subverting those services.  Email spammers send 
mass mailings to unwilling recipients, search-engine spammers attempt to rise in 
search-engine rankings by gaming search algorithms and, more recently, weblog 
comment spammers are exploiting the openness of weblogs to point both readers and 
search engines to irrelevant sites. 

In all of these arenas, spam could in principle be generated as carefully as its 
good-faith counterparts --- the old-fashioned way, one hand-crafted chunk of spam at 
a time.  In practice, spammers tend to deal in volume, and benefit from automation 
and consequent economies of scale. In some domains, then, detection of abuse can be 
reduced to the problem of detecting whether a human or a program is the originator. 

This paper focuses on the providing CAPTCHAs and other tests of humanity as a 
non-profit web service, with a focus on the application of limiting automated weblog 
comment spam. We argue that there is particular utility in making CAPTCHA 
generation into a web service, and open-sourcing the code. We also discuss the 
interaction of CAPTCHAs and accessibility, sketch some of the opportunities and 
issues for CAPTCHAs that a web-service approach creates, and demonstrate some of 
these ideas in a REST-style web service at http://captchaservice.org/. 
 

                                                      
1 The author's primary affiliation is the Yahoo Search Technology group at Yahoo! (YST).  The 
work reported on here, however, is a side interest unrelated to YST, and is undertaken in 
affiliation with the non-profit CommerceNet Labs.  The address for correspondence is 860 
Lavender Dr., Sunnyvale, CA 94086. 
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1.1 CAPTCHAs and HIPs 

A CAPTCHA (or Completely Automated Public Turing Test to Tell Computers and 
Humans Apart) is a test that verifies that the responder is a human being, by requiring 
evidence of an ability that is difficult to automate.  (See [1] for a survey and a 
summary of the state of the art.)   The most common CAPTCHAs in wide use are 
distorted images of text that are fairly easy for humans to read, yet problematic for 
OCR programs to decode (though see [2] for an account of breaking a visual 
CAPTCHA). 

A note on terminology:  the CAPTCHA term seems to vary widely in scope.  
Some restrict its meaning to tests that demonstrate humanity by reading images of 
distorted text, and prefer a more general term of HIP (or Human Interactive Proof) to 
subsume image-based CAPTCHAs as well as both non-image-based tests of humanity 
and other interactive tests of group membership (e.g. verification of adulthood).  
Others (including [1]) would call any interactive proof of humanity a CAPTCHA, as 
long as it also satisfies the requirement of still being difficult to break when the 
generation method is publicly disclosed.  For the purposes of this paper, we'll use the 
term CAPTCHA in the narrower sense, and use the term HIP when discussing some 
textual challenges (that may also not pass the public-disclosure test). 
1.2 Weblogs and CAPTCHAs 

Weblogs (or "blogs") are on-line diaries, usually controlled by one person, but 
sometimes by a cooperative group.  Authors typically make date-stamped entries, 
which are displayed in summary on a front page with most recent on top.  Subject 
matter ranges from the extremely mundane and personal to professional, technical and 
political writings. 

Weblogs have existed as a distinguishable web practice since at least 1999, and 
online journals of various kinds for much longer.  In 2004, however, weblogs hit 
mainstream awareness in a more serious way, with thousands of new bloggers 
arriving every day, and with high-visibility bloggers impacting mainstream 
journalism, technical communities, political campaigns and political scandals. 

Weblog software support has proliferated, usually taking the form either of a 
centrally maintained website that grants authorial privileges to bloggers (e.g. 
blogspot.com), or a software package that more technical bloggers who control a 
webserver can install and run themselves (e.g. Movable Type, Serendipity).  Certain 
blog software features have become standard and expected:  the "permalink" (a long-
lasting URL that can be expected to continue to resolve to a given posting), and 
support for reader comments.  Comments are usually follow-ups to a particular 
posting. 

1.3 Spam and Security Needs  

Weblogs with comments, then, have an ambiguous position with regard to authorial 
control.  Typically only the author can make primary postings, and anyone (or any 
program) can then follow up with a comment.  Comments can usually in turn include 
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links, offering a natural incentive to abuse the system with an irrelevant comment 
pointing to an unrelated site.  Such comment links drive traffic to the offending site 
either as comments are read, or via results from search engines that record the link. 

Bloggers usually have an implicit community of readers in mind that they would 
like to empower to comment, whether it is a set of family and friends, or anyone in 
the world who shares a deep interest in some particular topic.   Requiring that a 
commenter prove his or her humanity and pass a small hurdle to do so for each 
comment post is often an acceptable substitute (although see further discussion of this 
issue in the "Accessibility" section.)  Note also that we are constraining ourselves to 
the question of who or what should have "write permission" in a given blog;  for an 
interesting discussion of the analogous questions of read permissions and other 
privacy issues, see [3]. 

We argue not only that solving CAPTCHAs and other HIP tests are a reasonable 
requirement for posting a blog comment (and in fact CAPTCHA tests are now being 
incorporated into some popular weblog packages), but that the captcha/HIP 
generation process is a good candidate for abstraction as a web service, and that the 
code that powers such a web service is a good candidate for open sourcing. 

1.4 Why a Web Service?   

The reasons that CAPTCHA/HIP generation makes sense as a web service are not that 
different from the benefits of web services in general: 
 

o It is a well-encapsulated task.  That is, it is relatively easy to define a stable 
API that allows clients to request CAPTCHAs or HIPs while being insulated 
from the details of the algorithms that generate them. 

 
o CAPTCHA generation code can be written with a particular installation or 

library set in mind, without requiring that it run on all the platforms that the 
consuming software must support.  This is of particular benefit when the 
CAPTCHA generation requires image manipulation libraries. 

 
o Updates to CAPTCHA generation algorithms can be deployed easily, 

decoupling this from more general software releases. This can be important 
for speed of competitive response when spammers find ways to solve 
particular CAPTCHA challenges. 

1.5 Why Open Source?  

If we make the CAPTCHA-generation code freely available under an open-source 
license, we may reap the usual benefits of more collaborative help and more eyes 
finding bugs.  In addition, modifiable source means that we could have different 
installations of the service tweaked in different ways by the server's owners.  
Although this sounds potentially chaotic, if multiple installations can adhere to the 
basic API, then client programs could pull CAPTCHAs from any of them to present 
to an end user, without regard to the details of how the challenge was generated.   
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This could in turn increase the diversity and unpredictability of the CAPTCHAs 
presented to automated spammers. 

1.6 "Security Through Diversity"   

A perfect HIP would be trivial for any human to satisfy and impossible for any 
machine to defeat.  The level of imperfection that we should settle for depends on the 
use case, and in particular the level of investment that makes sense for an automated 
attack.  

For example, there may be quite a strong incentive to break a CAPTCHA test 
protecting account creation for a single-signon style account --- a given spammer may 
only need a small number of such successes to no longer need the cracking ability.  
By contrast, solving a CAPTCHA required for a single blog comment may not merit 
much in the way of resources. 

The cryptographic community has long favored challenges that retain their 
difficulty when the challenge-generation method is open and widely known, and 
alternative approaches that depend on keeping the method secret are categorized 
dismissively as "security through obscurity". The risk of releasing CAPTCHA-
generation code publicly is that you lose any security-through-obscurity benefit for 
the basic release.  The corresponding upside is something we might call "security 
through diversity" --- multiple diverging installations may drive up the complexity 
cost for anyone hoping for a general attack.   Even if there are some successes, if the 
success rate is low and the management headaches are high, we may help to make the 
spam business model less attractive. 

2 A captchaservice.org Example 

The CAPTCHA/HIP generation service at http://captchaservice.org is constructed 
using standard open-source scripting tools (PHP5 built with the gd image library) and 
offers a simple REST-style API.  Requests are URLs with GET arguments specifying 
the type and optional features of the challenge/answer pair; responses are in a simple 
XML format, which includes both the correct answer and a presentation of the 
challenge.  The challenge itself may be textual, in which case it is included in the 
XML response, or it may be an image, in which case a short-lived captchaservice.org 
URL for the image is included. 

2.1 Server-Side Production 

Here is a sample URL request to the service for an image-based captcha, with the line 
broken to show the GET arguments:   
 
http://captchaservice.org/server.php? 
   type=word_image& 
   key=10 
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The 'type' argument asks for a named category of CAPTCHA, with others discussed 
later in the paper.  (The 'key' argument is a stub to be used later for identifying 
requestors, should throttling become necessary.) 
 
This request yields a response of: 
 
<?xml version="1.0"?> 
<captcha> 
  <answer>BYWAYS</answer> 
  <answertype>string</answertype> 
  <challenge>http://captchaservice.com/ 
       imagecache/5df12ecf/8446b5bfe93e2bd6.png 
  </challenge> 
  <challengetype>imageurl</challengetype> 
  <altchallenge></altchallenge> 
  <altchallengetype></altchallengetype> 
  <errorstring></errorstring> 
  <errornumber>0</errornumber> 
</captcha> 
 
On receiving the request, the server chooses a random six-letter word, prints it to an 
image, distorts the image to obfuscate it writes the image to disk, and returns the 
XML above with the word in plain text and a URL to the stored image.  (Other fields 
just indicate that there is no "alt" version of the challenge, and that no errors 
occurred.)  The URL will be valid for a minimum of five minutes, but the image file 
will subsequently be deleted. 

The corresponding PNG image shown in Figure 1 is two-color, and in this 
particular case was white-on-blue (although colors are controllable by the client). 

 
 

 
 

Fig. 1.  A CAPTCHA of the word_image type, with the random_shear obfuscation type. 
 

Image Distortion Techniques.  We currently offer two different image-distortion 
techniques, with the choice controllable via the client API.   We refer to them here by 
the values that are given via that API to the 'distortiontype' GET argument:  
random_shear, and random_rectangles.  (The 'random_shear' type is the default used 
when no distortiontype argument is given.) 
 
The random_shear distortion.  In the CAPTCHA shown in Figure 1, the initial image 
of text is distorted by randomly “shearing” it both vertically and horizontally.  That is, 
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the pixels in each column of the image are translated up or down by an amount that 
varies randomly yet smoothly from one column to the next.  Then the same kind of 
translation is applied to each row of pixels (with a smaller amount of translation on 
average).  Difficulty of the CAPTCHA can be controlled with parameters that vary 
the maximum amount of translation and the maximum rate of translation change 
(although that control is not yet exposed the client in the current implementation). 
 
The random_rectangles distortion. Figure 2 shows what might result from a request 
URL like this (again, with lines broken to distinguish the GET arguments): 
 
http://captchaservice.org/server.php? 
   type=word_image& 
   fgcolor=white& 
   bgcolor=black& 
   distortiontype=random_rectangles& 
   key=10 
 
This technique is somewhat more complicated than random_shear, and slightly more 
expensive. 
 
 
 

 
 

Fig. 2.  A word_image CAPTCHA with random_rectangles distortion. 
 
 
First, a two-color image of text is scanned, and a list of coordinates of all pixels in the 
foreground color is collected.  This list is randomly shuffled and then truncated at a 
configurable proportion of the entire list (usually about 35%), so that only a random 
sample of the foreground-pixel coordinates is retained.  Once we have the list of 
coordinates, we wipe the original image clean.  Finally, we iterate through this list of 
coordinates and draw rectangles of randomly varying sizes centered on each 
coordinate position. 
 
Performance. The server-side operations performed in the CAPTCHA generation 
are, in order: 
 

1.  Reading a random challenge word from a disk file 
2.  Creating an image in internal format (gd) 
3.  Writing the word text onto the image 
4.  Obfuscating the image 
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5.  Writing out the image to disk in PNG format 
6.  Creating and returning the XML wrapper for the answer and the image URL 

 
In both distortion types we've presented, the distortion itself takes time proportional 
the the number of pixels in the image.  As you might imagine, the most expensive 
step is writing out the image file. We haven’t done any performance tests under load, 
but request-to-render time is approximately 0.25 seconds on an unloaded 1.5GHz 
Celeron server running Linux/Apache/PHP5.  (See section 4.2 for a notes on possible 
performance improvements.) 

2.2 Client-Side Use 

In the example above, the challenge and the answer are easily extracted.  A fragment 
of PHP5 to query the service (without error-checking) and set corresponding variables 
looks like this: 
 
$service_url =     
"http://captchaservice.org/server.php?type=word_imag
e&key=10"; 
$xml = simple_xml_loadfile($service_url); 
$challenge_url = (string) $xml->challenge; 
$answer = (string) $xml->answer; 
 
If we assume that the CAPTCHA is to be used to guard a weblog comment 
submission, how should the client use the image and the answer?  Comment 
submission forms can query captchaservice.org at generation time, include the URL 
to the newly created image in the form display, and include a text box for entry of the 
answer.  How should the answer be retained for comparison? 

One technique is for the client to save the answer and propagate it to the checking 
code, but (importantly) without revealing even an encrypted version of the answer on 
the publicly viewable form. The answer could be propagated via an associated session 
variable (if that capability is available in the client programming environment), or 
saved in a database with only the database record ID propagated to the submission 
handler. 

Another possibility would be for the captchaservice.org server to retain the 
answer string in a server-side database itself, and never send the answer to client that 
requested the CAPTCHA. The server would support both initial requests for 
CAPTCHA URLs and subsequent verification requests for a yes-or-no answer about 
whether a supplied string was correct for a given URL.  (This behavior is not yet 
implemented.)  This invites an attack where the attacker treats the CAPTCHA server 
as an oracle for multiple guesses, returning to the client when a guess is confirmed.  
As a countermeasure, the server could insist on providing verification for any 
particular CAPTCHA only once, destroying the server-side information after handling 
a verification request.  In this mode, if an attacker uses up the verification request to 
check a guess, that guess will then be unusable when submitted to the client. 
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Error Handling and Service Unavailability. The XML returned by the CAPTCHA 
service will generally contain both a positive error number and a diagnostic string, if 
for any catchable reason the generation was unsuccessful. How should client code 
handle errors, or the complete unavailability of the CAPTCHA server?  
Unfortunately, one side effect of the decoupling of the CAPTCHA generation from 
the client code is, of course, that the client might be functioning while the server 
machine is down.  (In the future, clients might have a list of captchaservice 
installations to try in succession, but initially we'll have one server machine.) 

Client code needs to have a handling policy for both explicit errors and service 
unavailability.  In such cases, the sensitivity of the service to abuse should help 
determine whether unavailability of CAPTCHAs should lead to everyone being 
barred temporarily or everyone being admitted temporarily. 
 
Vulnerabilities. In addition to exploitation of any clues to the answer exposed by the 
client, this CAPTCHA-generation method is vulnerable to a dictionary attack.  By 
default, all the candidate words are six-letter words or proper names in English; the 
list of candidates used has only 6000 entries.  An attacking program with access to the 
list, then has a 1/6000 chance of simply guessing correctly without any image 
analysis. 

This has two implications:  first, client programs should detect attempts to try 
guesses in bulk, most likely by tracking large numbers of incorrect guesses 
originating from the same IP address.  Secondly, we should provide a less vulnerable 
generation method to those who want it.  We do this by offering the CAPTCHA type 
random_letters_image which is identical to word_image, except that the string is 
composed of arbitrary letters (A-Z). (An example is shown in Figure 3.) 

 
 

 
 

Fig. 3.  A CAPTCHA of the random_letters_image type. 
 
 
This type offers 266 possibilities, rather than 6000, but has less helpful redundancy for 
human viewers as well.  (The 'L' above could as easily be a 'V', which would be less 
ambiguous if the string were a word.)  Such random-string CAPTCHAs should 
probably have less extreme settings for obfuscation than word-based CAPTCHAs. 

We also offer the user the alternative of supplying the challenge string 
(user_string_image), and simply taking advantage of the image obfuscation as a 
service.  In this type, our resource URL looks like 
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http://captchaservice.org/server.php? 
   type=word_image& 
   user_string=CAPTCHA 
   key=10 
 
and the image returned via the URL is shown in Figure 4. 
 
 

 
 

Fig. 4.  A CAPTCHA created from a user-defined string. 
 

3 Accessibility Issues 

The example in the previous section does exactly what one is not supposed to do in 
websites that are friendly to the visually impaired:  lock up crucial navigational 
information in an image without corresponding textual clues.  Unfortunately, the 
opposition between CAPTCHA/HIP tests and accessibility is not trivial or easily 
circumvented.   

The problem is that CAPTCHAs and HIPs that are designed to test for humanity 
do so by testing for an ability (whether sensory or cognitive), and a little bit of 
reflection should convince that there is no ability or combination of them that is 
common to every human being, or even every adult human being.  Whether it's 
reading distorted visual images, hearing words in audio files, answering 
commonsense questions, or doing logic puzzles in the head --- there will inevitably be 
some person who lacks the requisite sense or skill, and who will therefore be locked 
out by the given test. (See [1] for a survey of the problem, and some proposed 
solutions.  Unfortunately, we don't find any of the solutions particularly compelling, 
in that most either rely on a single-signon architecture, simply offer a solution in a 
different modality, or rely on social credentials that may equally inequitably 
distributed (e.g. possession of a credit card).) 

We do not believe that this inevitability quite relieves the providers of 
CAPTCHAs and HIPs from worrying about accessibility.  Although we believe that it 
is up to individual webmasters and site designers to make tradeoff decisions based on 
their expected audience, a CAPTCHA/HIP service should at least offer some different 
modalities for site designers to choose from, and ideally some multi-modal tests. 
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3.1 Textual HIPs at captchaservice.org 

Motivated by these accessibility considerations, we've experimented with purely text-
based challenges, and offer two types via the captchaservice.org site.  We want to 
disclaim these appropriately, as they are very insecure;  the generation of secure text-
based captchas seems to be inherently difficult, and we are interested in any advances 
others have made in this area.   
 
Odd Words Out. In the first type (odd_words_out), we present a list of words, and 
ask the user to indicate the word(s) that do not belong to the implicit category of the 
list.  This can be as simple as choosing one anomalous word from a set: 
 
jupiter 
mars 
mercury 
clarinet 
uranus 
saturn 
earth 
venus 
 
The generating technique here is simply to have pre-defined word sets corresponding 
to categories, and to present challenge sets that are predominantly drawn from one 
particular category.   

There are two obvious vulnerabilities to this technique, the first of which is that 
anyone armed with the source code and the word sets could quickly write a program 
to detect the odd words.  Secondly, even without such help, it may be easy to guess 
correctly by chance.  In the above instance, for example, there is is one "odd" word 
out of eight, and so a 1/8 chance of guessing correctly.   

Our initial plan for this HIP type was that we would offer, say, eight words out of 
which three did not belong, which would mean only a chance of 1/(8x7x6), or about 
0.3% chance of guessing correctly.  Our underlying assumption was that human users 
would solve such challenges in two steps:  1) extract the dominant theme of the list, 
and 2) scan the list again to locate the words that did not fit that theme.  We also 
assumed that both steps would be easy for humans.  However, we found that such 
challenges are annoyingly difficult.  For example: 
 
banana 
tangerine 
oxygen 
pear 
apple 
horse 
bassoon 
orange 
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We suspect that most people when viewing this list would be able to arrive at the 
correct conclusion (i.e. that the theme of the list is fruits, and that 'oxygen', 'horse', 
and 'bassoon' do not belong), but the correct answer does not have the easy 
immediacy of the image-based CAPTCHAs presented earlier.  Although we have no 
psychological tests to back this up, our guess is that the same combinatorics that make 
it hard to purely guess three odd words out of eight also make it cognitively 
challenging to do the first step of deriving the correct theme for a list. 
 
Descriptions of numbers. Another non-image challenge type that we have 
experimented with is a textual description of a number (number_puzzle_text). 
Solving this HIP for a human being requires reading the text and then doing a bit of 
mental arithmetic to derive the desired number.  An example challenge is: 
 
     the number of biological mothers a person usually has, plus one thousand 
 
In addition to reading text and adding numbers, this asks the human reader for a little 
bit of commonsense reasoning to arrive at the correct answer (1001).   

The generation technique here leads directly to a vulnerability.  To generate these 
puzzles, we maintain by lists of noun phrases representing numbers, and 
corresponding phrases representing combining operations, including addition, 
multiplication, and concatenation.  Each puzzle instance results from a random 
combination of these elements, deriving the textual phrase combination at the same 
time as the corresponding number.  The vulnerability is that, since each puzzle is a 
tree-structured combination of the elements, a challenger armed with the elements 
themselves could write a parser to solve the puzzle.  This is still considerably more 
difficult to automate than the odd-words-out puzzle, and could be hardened somewhat 
by adding a final step of textual obfuscation (say, by introducing some randomized 
spelling distortions).  We still must note that these text-based approaches seem 
inherently more reversible than the image CAPTCHAs, and it is difficult to imagine 
them surviving a determined attack aided by access to source code.  We are eager to 
learn about advances in this area. 
 
Mutli-modal HIPs. Finally, we offer one genuinely multi-modal HIP, by combining 
the number-puzzle type with an image of the number (number_puzzle_text_image).  
Multi-modal or bi-modal HIPs offer the following benefits: 
 

1) Humans with both senses or capabilities will have an easier time solving the 
challenge test, since they will be able to check hypotheses from one part of 
the challenge against the other. 

2) Humans lacking only one of the capabilities will not have the benefit in #1, 
but will still have a chance to pass the test. 

3) Programmatic attacks will most likely be reduced to trying to solve the 
easiest mode of challenge individually, since the cross-modal inferences in 
#1 are notoriously difficult problems for machine intelligence. 

 
For example, one request for a number_puzzle_text_image returned the challenge 
shown in Figure 5, with an "alt" challenge of "one hundred plus pi, rounded down". 
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Fig. 5.  The visual portion of a number_puzzle_text_image CAPTCHA 
 

4 Discussion and Future Work 

We move beyond the current implementation for the moment, to discuss some general 
tradeoffs in CAPTCHA generation as a web service, and to explore the general 
problem of maintaining a consistent difficulty level in challenges. 

4.1 API Design Considerations 

If we assume for the moment that CAPTCHA generation is a good candidate for 
being an independent web service, what kinds of control would we like to offer to the 
requesting client? 
 
Easy defaults and flexible controls. The most obvious desideratum is that using the 
simplest and most popular CAPTCHA types should be easy and straightforward to 
request and incorporate, with little study of documentation needed.  In future versions, 
we plan to offer more controls and options to each type via new GET arguments, but 
without increasing the required arguments beyond two (the basic CAPTCHA type and 
an ID for the requestor for potential throttling). 
 
Cosmetic customization. Users will inevitably want to be able to change fonts, 
colors, image sizes, and so on.  These requests should be supported via optional 
arguments, with prevention of combinations that will make it impossible to solve the 
CAPTCHA (for example, requesting foreground and background colors that are the 
same, or font and image sizes that will inevitably clip the text). 
 
Randomization. Most CAPTCHA types obviously require random choices in the 
generation of CAPTCHAs themselves, but the API should also provide a way to 
randomly vary cosmetic factors (e.g. colors) and, more interestingly, choose randomly 
between various CAPTCHA types.  For example, client programs should be able to 
specify a request for randomly chosen HIP that fits a broad predefined class (say, 
those that present an obfuscated image where the desired answer is a string).  This 
will allow, for example, new image transformation types to be introduced and 
exposed to users and bots, without any change to client code. 
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Difficulty control. The tradeoff between security and hassle for the human end user 
will be very different for different client installations;  some will want just a token 
barrier, while others will want CAPTCHAs that could survive non-trivial automated 
attacks, and are willing to require substantial thought from end users.  One way to 
support this via the API is to include a 'difficulty' argument, which can be dialed up or 
down for CAPTCHA types that support it.  Although this is not yet implemented, it 
should be straightforward for the sheared-image CAPTCHAs discussed at the 
beginning of this paper to have difficulty levels that are mapped to image distortion 
parameters. 
 
Profiles. An alternative to pre-defining classes of CAPTCHAs that might be asked for 
is to allow mappings from client keys to sets of control arguments, and allowing 
random selection between the specified types of CAPTCHAs. The profiles should be 
maintainable via a web interface.  This should allow clients to specify sets like:  "any 
image-based CAPTCHA of difficulty 3 or lower, with a background color of white, 
and a randomly varying compatible foreground color", and thereafter request the 
CAPTCHA by client key only.  (Note that by "client" here, we mean "calling code", 
not "paying customer" -- we have no intention of charging money for this service.) 
 
Configurable Obfuscation pipelines. In addition to the techniques of image 
obfuscation covered above, we've experimented with several others, as well as with 
using applying several such distortions in succession.  You could imagine a client 
controlling the algorithm down to the level of choosing and ordering a pipeline of 
such modules (e.g. speckle, then shear, then blotch).  Alternatively, choice of a subset 
and ordering of distortion modules could be a useful randomization technique. 

4.2 Performance and Scaling 

As discussed earlier, the captchaservice.org system has not yet encountered serious 
load, even in testing.  It is a natural question how the system could be scaled if the 
service became widely used, so we note possible approaches here (although these 
improvements have not yet been implemented). 
 
Clustering. The task of generating CAPTCHA images themselves could be easily 
spread across a cluster of servers, without any state needing to be maintained across 
those servers.  One centralizing requirement imposed by the API is that a stable URL 
be returned that the client can embed in a page, but no commitments are made as to 
the form of that URL.  You could imagine a centralized dispatching web server, that 
farmed requests to CAPTCHA servers in a round-robin manner, received responses in 
the form of server-specific pathnames, and returned the pathnames as URLs with 
additional encoding of the originating server.  Requests for images using those URLs 
would be proxied to the appropriate server machine, and the image data returned to 
the client by the dispatching server. 
 
Caching.  A less expensive approach would be to cache some CAPTCHAs for reuse, 
thereby decreasing the average cost of servicing each request. 
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The danger here is that we do not want to provide extra information to an attacker 
via this caching process.  For example, if we simply reuse URLs that were provided in 
response to earlier requests, we invite an attack where a CAPTCHA is requested and 
the answer and URL are saved, and then other client's pages are scanned for instances 
of the same URL. 

Instead, it should be sufficient to reuse some image files, but generate a new file 
path for a symbolic link on the server to the original file.  (This still invites an attack 
where images are requested and the full image contents are compared, but that is 
considerably more expensive.)  In any case, the lifetime of cached images should be 
comparatively short. 

4.3 Difficulty Control for Combinatorial CAPTCHAs 

It is easy to declare an API for controlling difficulty (for humans), but designers of 
CAPTCHA/HIP algorithms know that it can be quite hard to achieve a consistent 
level of challenge across all the instances produced by a randomized algorithm.  
We're confident that we can map a few specified levels of difficulty to the image-
shearing parameters discussed above, and that on average more extreme levels of 
randomized shear will correspond to greater difficulty of reading, but odd interactions 
of shear level and particular letters can still make for noticeable differences even with 
identical control parameters. The word_image type now has fairly consistent 
difficulty, but only as the result of careful tuning. 
 
This problem seems to be particularly acute for combinatorial tests that gain variety 
by successive random choices from a set of possible elements.  An example is the 
number_puzzle_text test discussed above, where the particular choice of operands 
and operators may result in substantially different mental arithmetic problems.  Which 
of the following tests would you prefer not to do in your head? 
 

one million times four hundred and ninety-three 
eighty-four plus pi (rounded down) 
type four hundred and ninety-three, and then type eighty-four immediately to the 

right of that 
eighty-four multiplied by four hundred and ninety-three 

 
We find the first three to be fairly easy, and the last to be challenging.   The question 
is how should one design the selection of combinations like this to maintain a 
consistent difficulty level?  Among the possible alternatives are: 
 

 Constrain the elements and joining operators in such a way that there is no 
possible combination that is overly difficult.  This can substantially limit the 
variety of the tests. 

 Maintain a difficulty model that can be applied to evaluate a test at the end of 
generation, and repeat a random generation until you find a test with an 
acceptable level.   
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 Maintain a set of constraints on particular combinations that are invalid (e.g. 
no multiplication operations for operands that both have more than one 
significant digit), and make successive choices that respect the constraints. 

 
We implicitly did the first of these in our first draft of the number puzzle test, and will 
probably do some version of the third alternative going forward. 

5 Summary 

We have introduced captchaservice.org, a new non-profit web service that offers a 
variety of CAPTCHA and HIP tests via a simple REST-style API, with an eye to use 
by client weblog packages. The current version offers three variants of a distorted-text 
CAPTCHA (presenting words, random letter strings, and user-supplied strings), two 
pure-text HIPs (a textual description of a number, and an "odd words out" test), and a 
multi-modal type combining a number puzzle with an image test. We've discussed 
some of the accessibility, API design, and difficulty control considerations that 
motivate our current and future work, and expect to continue to augment the service 
both with increased control via client API and with new CAPTCHA/HIP types. 
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Abstract. Efforts to defend against automated attacks on e-commerce
services have led to a new security protocol known as a CAPTCHA, a
challenge designed to exploit gaps in the perceptual abilities between
humans and machines. In this paper, we propose a new paradigm for
building CAPTCHA’s which offers simultaneous benefits to both online
security and pattern recognition research. We illustrate our discussion
with a number of examples and suggest various directions for future
work.

1 Introduction

E-commerce services have become attractive targets for malicious programs mas-
querading as legitimate human users. Efforts to defend against such attacks have
led to a family of new security protocols known as “Human Interactive Proofs,”
or HIP’s. For our purposes, one type of HIP is of particular interest: “Com-
pletely Automatic Public Turing tests to tell Computers and Humans Apart,”
or CAPTCHA’s. CAPTCHA challenges exploit gaps in the perceptual abilities
between humans and machines. To date, most applications of this paradigm in-
volve requiring the user to transcribe a text string that is presented in image
format. Usually, the image is degraded in ways that cause no difficulty for a
human user but which make the corresponding machine vision problem difficult.
However, such tests can also involve recognizing a spoken utterance, solving a
puzzle, etc. Having attracted the attention of an eager research community, new
kinds of tasks are being proposed with increasing regularity.

CAPTCHA’s, first described by Broder, et al. [6], have proven quite successful
at preventing automated attacks. Recently, however, several well known text-
based CAPTCHA’s have been broken [2, 8], and it seems conceivable that others
could yield soon as well. The ability to disseminate software via the Internet
means that such knowledge propagates instantaneously throughout the world,
posing a threat to the security of any website that depends on the compromised
technology. The need to produce challenges that the general public will tolerate
places constraints on how hard the tests can be, tying our hands in a sense. A
critic might argue that we are witnessing an arms race that will someday be
decided in favor of the crackers.
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Moreover, we must face the unavoidable conundrum that any CAPTCHA can
be solved quickly and easily by any human user. This fact has been exploited in
what has come to be known as the “pornographer-in-the-middle” attack, i.e., a
“bot” wishing to solve a challenge foists it off on an unsuspecting human who
is, by sheer coincidence, attempting to access another, different website under
the attacker’s control. The operative assumption underlying most commercial
CAPTCHA’s – that the test consists of a single challenge to read a noisy image
of a text string – appears too limiting.

While other modalities, e.g., speech, are somewhat more difficult for ma-
chines, there is no reason to believe they will remain inaccessible indefinitely.
Unfortunately, while current CAPTCHA solutions may lack longevity, the need
to protect networked services from attack will be an ever-present problem.

In an attempt to address some of these issues, Baird and Bentley propose a
family of design principles in a recent paper [1]. They observe that the act of
navigating a website is a task posing inherent challenges which can be used to
create a new form of “stealth” CAPTCHA utilizing tests that:

– are disguised as necessary browsing links;
– provide only a few bits of confidence, but can be answered by the user in a

single mouse click aimed at the correct subregion of an image;
– require contextual knowledge to perform (e.g., by labeling needed user in-

terface “widgets” in a way that demands pattern recognition skills);
– are so easy that a single failure suggests a robot attack, at which point more

stringent measures can be applied.

They argue, compellingly, that these policies result in CAPTCHA’s that appear
less arbitrary (and hence more appealing) to human users and that would be
more difficult for machines to attack.

Building a web service that conforms to such guidelines, however, seems to
require a fair amount of individualized effort and hand-tuning. New and spe-
cialized skills would probably be required of the site’s designers. The ability
to generate very large numbers of different challenges, cheaply, on-the-fly, and
completely randomly, appears to be an open problem. If this last point cannot
be resolved, such services may be susceptible to attacks where a human user
proceeds through the website once recording his/her actions for later use by a
bot intending to exploit it.

In any event, it is clear that a number of vexing issues remain with respect to
the design, analysis, and implementation of CAPTCHA technology. The work
by Baird and Bentley raises the notion that such challenges need not consist of a
single pass/fail test, but can be a series of actions which, when taken as a whole,
provides some level of confidence that the user is indeed human. In this paper,
we build on that same general concept, but under a different paradigm and with
a new, secondary goal in mind.
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2 Leveraging the CAPTCHA Problem

We note with some irony that a fundamental premise behind the design of most
CAPTCHA’s has been that decades of research have failed to provide solutions
to the pattern recognition problems in question. Yet, in a matter of months,
certain types of challenges have been met in ways that are effective for the task
at hand, but not particularly relevant to the original problem that motivated
the CAPTCHA in the first place. Instead of helping to solve the general OCR
problem for degraded text, which remains open, they can be viewed as specialized
routines that are only useful for breaking CAPTCHA’s. This is due to the fact
that, for the most part, the challenges in question, some of which are illustrated
in Figs. 1 and 2, are largely artificial, having little basis in the real world of
character recognition.

Fig. 1. The CAPTCHA protecting free Yahoo! email accounts.

Fig. 2. Other examples of current approaches to text-based CAPTCHA’s.
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This observation applies not only to the effort expended to develop algorith-
mic techniques to circumvent CAPTCHA’s, but, perhaps more significantly, to
the enormous amount of time and cognitive “horsepower” exerted by the thou-
sands or millions of human users who correctly solve the CAPTCHA’s presented
to them, only to have their work immediately discarded once the test is over.
Although serving an important security function, the current paradigm provides
no long term benefit to society beyond allowing individuals to access a protected
web service.

Since substantial resources are directed towards answering CAPTCHA chal-
lenges,1 and since nothing will deter concerted attempts to develop algorithms for
attacking CAPTCHA’s, we argue for a major shift in philosophy: make the use
of, and even the breaking of, CAPTCHA’s a “good thing.” Instead of contrived
questions, employ real pattern recognition tasks from important domains that
are the subject of active research. Instead of discarding the input that users of
a website provide, use it as ground truth labels to train and test new classifiers.
Instead of prosecuting crackers who post code to break a CAPTCHA on the
WWW, harvest it and incorporate it in experimental systems to solve the original
problem of interest.

The benefits to adopting this viewpoint are counterbalanced by a number of
open issues that need to be addressed. These include developing architectures
that fuse CAPTCHA technology much more tightly with pattern recognition
problems that arise in real applications. Moving away from simple tests that
are tightly controlled and for which the correct answers are precisely known in
advance will require rethinking the way CAPTCHA’s are currently implemented.
The remainder of this paper attempts to raise some of the more significant
questions.

3 Community-Labeled Data: The Open Mind Initiative

A key feature of our proposal is the notion that answers to CAPTCHA challenges
are too valuable a resource to be simply discarded. The problem of acquiring
sufficient training and testing data to support experimental pattern recognition
research is regarded as so pressing that it was one of the prime motivations be-
hind the creation of the now-moribund Open Mind Initiative [12, 13], a project
to enlist Web users in the labeling of ground-truth data for algorithm devel-
opment. Whereas the incentives for participating in the original version of the
project, which was modeled on the Open Source Movement, may not have been
sufficiently apparent, the commercial underpinnings of the CAPTCHA problem
are certainly strong enough to overcome this particular hurdle.

Our requirement that CAPTCHA’s reflect real, not synthetic, tasks requires
a source for such inputs. Fortunately, vast collections of multimedia data are
available for this purpose, from the “in-house” training and testing data already
1 A recent report notes that Yahoo!’s free email service has over 52 million subscribers,

each of whom presumably had to solve a CAPTCHA along the lines of the one
depicted earlier [5].
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used by researchers [9] to scanned documents chosen at random from online
digital libraries [7] to real-time feeds from Webcams around the Internet [15].
Instead of being limited to transcribing a simple text string, questions would re-
flect a particular task of interest. Some examples, taken from multimedia sources
on the WWW, are shown in Figs. 3-7. Consider the fundamental difference be-
tween the nature and the usage of the data collected for the CAPTCHA shown
in Fig. 2, which reflect synthetically generated images, and that shown in Fig. 4,
which derives from a real letter handwritten by George Washington in the Li-
brary of Congress archive. The range of available problems – and their inherent
difficulties – is at least as broad as the research programs designed to address
them.2

Fig. 3. “Draw a box around a text string in this image.” (From the Lehigh
University Library Digital Bridges project, http://bridges.lib.lehigh.edu/.)

While collecting user responses is straightforward, it may not be obvious how
such a test can be used as a CAPTCHA since our assumption is that the correct
answer – the vetted ground-truth – does not yet exist (otherwise there would
no point in saving the user’s input). Moreover, we have no guarantee that the
user in question is not a machine, or that the answer he/she/it provides is correct.

2 Of course, it is always possible to modify each real-world CAPTCHA slightly – e.g.,
by re-cropping an image or injecting a small amount of noise – so that an attacker
cannot assemble a collection of previously-solved tests for later use.
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Fig. 4. “What word appears within the box?” (From the George Wash-
ington papers at the Library of Congress, http://memory.loc.gov/ammem/
gwhtml/gwhome.html.)

Fig. 5. “Describe the weather in this scene.” (FromWABC CentralParkWebCam,
http://abclocal.go.com/kabc/features/cams/082102 central Park cam.html.)

How can such a test possibly serve as a CAPTCHA? By requiring the user to
pass more than one test.
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Fig. 6. “Which photos show the same person?”

Fig. 7. “How many cars do you see in this image?” (From WCPO Cincinnati
Ohio Skycam, http://webcambiglook.com/cinn skycam.html.)

Say that the user is presented with n challenges over the course of interacting
with an online service, C = {C1, C2, . . . , Cn}, for at least one of which, say Ci,
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the true response is known. Then the user’s response to challenge Ci can be used
to permit/deny access to the service, while the remainder of his/her responses
are used to label tentatively the rest of the challenges, C − Ci (assuming the
user is judged to be human). Once sufficient evidence is collected to suggest that
a particular answer to one of these tests is reliably known, it can enter into the
set of deciding challenges. Likewise, CAPTCHA’s that are found to be broken
(i.e., the correct response is returned by a user determined to be a machine
through its failure on some other challenge) can be retired from service. Note
that, as in the spirit of Baird and Bentley, it should be possible to manage the
series of challenges in a way that is relatively simple and perhaps even “fun” for
the user. The sequencing can also provide the context necessary to defeat the
“pornographer-in-the-middle” attack described earlier since the user will have
to have experienced a specific collection of tasks in a defined order to succeed.

There are numerous open questions concerning the design of such protocols.
In a later section, we present one possible scenario to illustrate our ideas. Sim-
ulation studies could be an instructive way to explore this hypothesis in more
detail.

4 Third Party Certification Services

A basic tenet of our proposal is that the CAPTCHA tasks must be directly
connected to research questions to make ground-truth labels that are collected
useful (as well as algorithms that are developed for successful attacks). It is likely
that the requirements of implementing such tests will be too specialized for the
average webmaster who may know little or nothing about pattern recognition
research.3 Moreover, ground-truth data is most valuable when it is amalgamated
and made freely available to the research community.

There is a distinct separation between those who require the protections
afforded by CAPTCHA certification for users of their website and those who
provide support for the conduct of pattern recognition research. Dividing these
responsibilities makes good sense. A trusted third-party authority could be es-
tablished to generate and administer CAPTCHA’s and certify users, much like
the services provided by companies such as VeriSign Inc. [14] and RSA Secu-
rity [10]. This organization would collect user responses as well as data on at-
tempted attacks (especially successful ones) and make this information available
to the pattern recognition research community in the same spirit as the Open
Mind Initiative.

5 Scenario

In this section, we walk through one possible scenario to illustrate how the
paradigm we are proposing might work. We observe that there are, of course,
many alternatives each step of the way. For instance, while all of our examples
3 Indeed, we note that there is already a significant danger of naive webmasters fielding

CAPTCHA’s that are too easy (and hence already breakable) without realizing it.
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are drawn from a particular digital library that is freely accessible online – the
George Washington papers at the Library of Congress [4] – it should be quite
clear that a mixture of challenges might be more effective against certain attacks
(recall Figs. 3-7). It is also important to note that new challenges are added to
our system with little or no manual oversight; that is, a page is simply chosen
at random from the digital library and used to create the kinds of tests we are
about to describe.

Say that during the process of attempting to access a service on our hypo-
thetical system, a user is presented with a series of five CAPTCHA challenges
(Figs. 8-12). These are all related in that they reflect the common steps in
ground-truthing a scanned image of a page of a handwritten document. As such,
the collected data reproduce the same sorts of information present in standard
datasets used for performance evaluation (e.g., [9]). It is not necessary for the
individual tests to be conducted in the specified order, or even sequentially (the
pages we use here are all different); other interactions may take place between
CAPTCHA challenges. To obscure which tests may have been passed or failed,
the final determination of whether the user is human or machine is only revealed
at the end of the session, before any action requested by the user is finalized.

The first challenge, shown in Fig. 8, asks the user to identify the proper ori-
entation for the page image (the correct answer is highlighted as if the question
has already been answered). Such a weak test provides only a few bits of con-
fidence, but, as suggested by Baird and Bentley [1], this can be sufficient when
taken in the context of a series of tests. In this case, let us assume that the true
answer to the CAPTCHA is not yet determined. Hence, the user’s input is not
distinguishing – we have no way of knowing whether it is right or wrong, whether
the user is human or machine. Nevertheless, we save the response with the goal
of using it to label this particular CAPTCHA if the user is ultimately judged to
be human.

The second challenge is shown in Fig. 9. Here the user is asked to delimit a
single text block in the page image. Say that we have already collected several
inputs from users we have previously determined to be human for this particular
CAPTCHA. We can use this test, then, as an indication of whether the new
user is human or machine by comparing the response to the bounding boxes we
believe to be correct. If it is close enough (within some predetermined threshold),
we judge that the user has passed and increase our confidence in a “human” vote.

The third and fourth challenges, Figs. 10 and 11, are similar. We might
assume that Fig. 10 reflects a CAPTCHA we have used on humans in the past,
while Fig. 11 represents another new test we would like to add to our inventory
once we have acquired sufficient evidence of the correct answer(s).

The fifth and final challenge appears in Fig. 12. Here we present a test that
superficially resembles current text-based CAPTCHA’s. The user is asked to
transcribe the handwritten word shown on the screen (which has been segmented
from the text line through its participation in an earlier CAPTCHA). Note, how-
ever, that under our paradigm, we do not necessarily know the correct text string.
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Fig. 8. “Click to select the correct orientation for the page ...”

That depends entirely on whether this test has been administered previously to
one or more users determined to be human.

6 Discussion

The ideas we have put forth in this paper have several properties that make them
attractive alternatives to the traditional approach to building CAPTCHA’s. Al-
though certain problems involving CAPTCHA’s seem unavoidable – e.g., the
fact that some are breakable algorithmically and all are susceptible to indirect
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Fig. 9. “Please draw a box around a single block of text you see in the image ...”

attacks – their potential to have a positive impact on pattern recognition research
would be greatly enhanced by connecting them directly to real-world problems.
To date, most existing CAPTCHA’s have ignored this possibility. Two notable
exceptions, which do in fact derive from the field of document analysis, are
Pessimal Print by Coates, et al. [3] and the offline handwriting CAPTCHA
by Rusu and Govindaraju [11]. However, neither of these implementations was
developed for the purpose of collecting labeled ground-truth data (nor, most
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Fig. 10. “Please draw a box around a single line of text you see in the image ...”

likely, for inciting crackers to solve the true problem of interest). Indeed, both
assume that the correct labels are already known.

The testing paradigm we have outlined requires further development. A num-
ber of important open questions remain. How can ground truth be used when
the reliability of its labels is not yet proven? Are there attack modes that would
allow a bot to overwhelm the system and not only compromise its services but
also the valuable data it is collecting? Is it possible for real users (i.e., humans)
to become locked out if the system grows convinced that the erroneous answers
provided by a certain algorithm are correct? What is an architecture that can
present a coherent series of CAPTCHA challenges without, hopefully, annoying
the user? These are some of the issues we hope to raise for discussion at the
HIP2005 workshop.
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Fig. 11. “Please draw a box around a single word you see in the image ...”

Fig. 12. “Please type the word you see in the image ...”
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Abstract. We would like to quantify the assurance contained in an authentica-
tion secret.  For instance, how much assurance does a customer convey to a 
bank by revealing that his Personal Identification Number (PIN) is 1111?  We 
review a number of previously proposed measures, such as Shannon Entropy 
and min-entropy.  Although each is appropriate under some assumptions, none 
is robust regarding the attacker’s knowledge about a nonuniform distribution.  
We therefore offer new measures that are more robust and useful.  Uniform dis-
tributions are easy to analyze, but are rare in human memory; we therefore in-
vestigate ways to “groom” nonuniform distributions to be uniform.  We de-
scribe experiments that apply the techniques to highly nonuniform distribu-
tions, such as English names.  

1   Introduction 

To gain access to a computer system, a user typically presents both a public name and 
a secret password.  When the user tells that secret correctly, the system gains assur-
ance that it really is that user, and not a lucky guesser.  How much assurance is in a 
password?  Very little if the password is “dog” (especially if a web search for the user 
reveals that he owns dogs), but much more if the password is “tbdam3CS@h”.  Can 
we quantify our intuitive notion of that assurance? 

Quantification would have important implications in security engineering.  Current 
password policies are based on rules such as insisting that a password must be eight 
characters long, include a mixture of upper and lower case and numerics, and contain 
no dictionary words.  We would like to quantify our intuition that “q#acwm!” is a 
better password than “Supercalifragilisticexpialidocious1”, even though the former 
violates all rules and the latter is five times longer.  Ideally, a security engineer would 
weigh assurance against cognitive effort to choose provably good password policies. 

Similar issues arise in most Human Interactive Proofs.  If the correct response to a 
CAPTCHA is “iw5r7Acq”, then we feel that we have more assurance than for the 
string “cat”.   To make a quantitative statement about that example, we would have to 
take into account how the CAPTCHA chooses text, how the text is transformed, how 
the attacker recognizes characters (and what mistakes it makes), the strategy the at-
tacker employs, and many other issues. 

Most of this paper will therefore be devoted to a problem that is relatively easy to 
state, yet still important: how much assurance is provided by a 4-digit Personal Identi-
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fication Number (PIN)?  Extensions to more subtle problems are examined in later 
sections. 

2   The Technical Question 

To use an Automated Teller Machine (ATM), a customer needs both a bank card and 
the corresponding 4-digit PIN. If the card is lost or stolen, the PIN provides some 
protection against its unauthorized use by an attacker.  How can we measure the 
amount of protection the PIN affords?    

We take as axiomatic that the degree of protection, which we call assurance, is 
measured by the probability p that an attacker can guess the PIN.  We find it conven-
ient to speak of the number of bits1 of assurance, which is -log2 p (all further loga-
rithms in this paper are base 2).  We write assurance(C|A) = -log P(C|A), where 
P(C|A) is the probability that an attacker A guesses the customer C's PIN correctly.  
The bank may feel that by implementing a 4-digit system, they have provided each 
customer with log 10000 ~ 13.3 bits of assurance.  But can a particular customer, who 
may have chosen as his PIN the easy-to-remember number 1111, have this degree of 
assurance?  And what about a sophisticated attacker, who has found a bank card, and 
knows a lot about how people choose PINs?2 

We do not have access to large sets of real PINs for real ATM cards, so we did 
several simple experiments to study the PINs that people use in other domains.  A 
web search for “passwords name pin cheats” gave a variety of web sites that list 
“cheat codes” for computer and video games, many of which require a 4-digit PIN.  
The web site www.gamefaqs.com/computer/doswin/code/25003.html, for instance, 
gives this set of 41 PINs, which we present in sorted order: 

0201 0310 0322 0425 0517 0526 0530 0604 0818 1029 1111 1111 
1111 1111 1111 1111 1112 1122 1221 1234 1836 2220 3141 3246 
3333 3333 3333 3691 4288 4393 4440 5158 5651 6000 6660 6765 
6969 7761 7777 8148 8337 

The authors feel confident in asserting that a uniform random process did not gener-
ate those 41 PINs.  Six of the numbers are 1111; an attacker who guesses that PIN has 
about a 15% chance of success, which indicates under 3 bits of assurance. Four other 
PINs also contain a single digit.  The PINs 1112, 2220, 4440, 6000 and 6660 deviate 
in just a single affix digit.  Of the numbers that begin with the digit pair 00 through 
12, all but 1234 have second digit pairs less than 31, which make us think of dates 
(birthdays seem particularly likely).  Excluding these PINs leaves us with less than a 
third of the original set: 
                                                           
1 Shannon [1948] begins by counting the number of messages, and quickly moves to the loga-

rithmic measure of bits.  We find the logarithmic measure more appropriate for assurance for 
the same three reasons that Shannon found the logarithmic measure more appropriate for in-
formation: it is more useful, nearer intuition, and more mathematically suitable. 

2 A bank may allow a customer several attempts at entering a PIN, to allow for mistyping and 
the like.  If the attacker fails on his first attempt, he should simply ignore that PIN and pro-
ceed with the next-best possibility.  For simplicity, we ignore this complication, and assume 
that only one attempt can be made. 
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1836 3141 3246 3691 4288 4393 5158 5651 6765 6969 7761 8148 8337 
Even this subset does not appear to have been chosen at random; only three of the 
thirteen PINs have four different digits, though more than half of the 10000 possible 
PINs have that property. 

This simple experiment is not atypical.  At another site, 14 of 34 players used the 
PIN 1111.  One of the authors is willing to admit that at one time, one of the three 
ATM cards in his wallet had the (default) PIN 1111 (that card is now discarded).  
Such experiments and decades of bitter experience (see Morris and Thompson 
[1979]) lead to our basic assumption: 
 Humans tend to choose secrets in nonrandom and repeated patterns. 

3   Assurance Is Not Entropy 

We might assume that a 4-decimal-digit keyspace of PINs means that an individual 
PIN yields about 13.3 bits of assurance.  But if many users choose the PIN 1111, then 
that particular PIN should carry fewer bits of assurance.  How can we quantify that 
intuition? Many information scientists (including the authors and several of their 
colleagues) jump to the answer, “Entropy, of course!”  That answer is wrong. 

One approach to authentication is to ask people questions that are easy to remem-
ber yet are hard for attackers to guess (see O’Gorman, Bagga and Bentley [2004]).  
Such a question with four answers can be viewed as a 2-bit PIN.  Our internal corpo-
rate web site offers a daily straw poll with questions such as “What is your favorite 
way to celebrate a holiday?”  The answers and their (rough) percentages are 
 Gather with family and friends 71%    
 Catch up on chores  17%    
 Attend a wild party  11%    
 Volunteer at a shelter    1% 
The maximum possible entropy for four answers is 2 bits (when each occurs uni-
formly, 25% of the time). Interpreting the percentages as probabilities gives an en-
tropy for these nonuniform answers of 1.2 bits.  On the other hand, an attacker who 
guesses “family and friends” has a 71% chance of being right on this question, and 
slightly more than a 50% chance of being right on two such questions in a row.  Our 
intuition says that such an answer should therefore be worth at most half a bit of as-
surance.  Evidently, assurance is not entropy. 

Shannon [1949] first examined related issues in terms of “secrecy systems”.  A 
great deal of work has been done since then in “authentication theory”.  Cachin 
[1997, Section 3.1] surveys information measures that have been used in cryptogra-
phy to characterize probability vector p = (p1, p2, ..., pN), where the probabilities have 
been ordered so that p1   p2  ...  pN.  He starts by reviewing the classical Shannon 
entropy of - i pi log pi.  He also describes the min-entropy of –log p1, which charac-
terizes the probability of guessing the most likely element, and therefore the largest 
security hole (such as “family and friends” above).  The guessing entropy i i pi gives 
the expected cost of a sequential search (Knuth [1973, Section 6.1]) for a secret, start-
ing at the most likely guess and progressing until the answer is found.  This measure 
might describe the time required to guess a hashed password, given a dictionary of all 
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passwords ordered by frequency.  Other measures that Cachin describes include rela-
tive entropy, Renyi entropy of order , collision probability, and variational distance.  
None of these measures, though, directly addresses the issue of concern to us: how 
much assurance is in a particular secret?  (Though we will see in the next section that 
many of these measures are very relevant in particular contexts.) 

In his “Unified and generalized treatment of authentication theory”, Mauer [1996] 
cautions us that “Compared to the theory of secrecy, authentication theory is more 
subtle and involved.”  Ellison, Hall, Milbert and Schneier [1999] point out that “Re-
search needs to be done on the actual entropy (from the attacker’s point of view) of a 
given class of answers….”  With that warning and challenge, we now address those 
issues. 

4   Three Views of Nonuniform Probabilities 

Three players are in the game.  The first is the Bank, B, which chooses N, the size of 
the key-space (N=10000 for a 4-digit PIN).  The second is the customer, C, who 
chooses a particular PIN x(C), and who is interested in the probability that this par-
ticular PIN can be guessed.  The third is the attacker, A, who (we assume) may know 
everything about the key system, except the value of the particular PIN that goes with 
the bank card he has found.3  In particular, we assume that the attacker may have 
access to statistical information regarding the frequencies of the various PINs. 

Each of these players has different concerns.  The customer is interested in the de-
gree of protection afforded by his own PIN.  The bank is interested in one or more 
summary statistics regarding its customers, for example the average degree of protec-
tion they have, or the protection given to the least-protected customer.   The attacker 
is interested in the probability that he will be able to guess the PIN associated with the 
particular bank card he has found, which we assume is randomly chosen from all the 
bank customers. 

4.1   The Attacker 

It is convenient to start with the attacker.  A naïve attacker will guess all possible 
values of x(C) equally often, with the chance of success of precisely 1/N.  The bank 
therefore achieves log N bits of assurance against that attacker, which we will refer to 
as the max-entropy (by analogy with min-entropy).  At the other extreme, a well-
informed attacker might know the probability vector p = (p1, p2, ..., pN), which gives 
the probabilities with which each of the N possible PINs is used.  We suppose the 
possible PINs have been ordered so that p1   p2  ...  pN.  Now suppose that p1 =  p2 
=... =  pk > pk+1.  Then the attacker's optimal strategy is to guess one of x1, x2, ... , xk, 
and (whether or not he randomizes among these possibilities) P(C|A) is just p1.  Any 

                                                           
3 The Attacker (A), Bank (B) and Customer (C) of authentication collectively apologize to 

Alice (A), Bob (B), and Carol (C) of cryptography for unintentional identity theft. 
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other strategy will decrease P(C|A).  In this case, the min-entropy accurately charac-
terizes the weakest link in the chain. 

In the first case, the attacker has information about no PINs, while in the second 
case, he knows the distribution of all PINs.  To define a state of knowledge interme-
diate between these two, we consider an attacker who has access to a single random 
PIN, say y, chosen from all the PINs of the bank's customers.  The optimal strategy 
for this “single-peek” attacker is to guess x(C) = y, and his chance of success on this 
occasion is py.  The overall chance of success for an attacker of this type is PA = y 
(py)2  (because it is the probability that the customer's choice of PIN matches the one 
the attacker has seen).  We have 1/N  PA  p1, so the assurance is between the max-
entropy and the min-entropy.  Furthermore, the weighted average assurance of a cus-
tomer with respect to this single-peek attack is the Shannon entropy - i pi

 log pi. 
One can consider the more general case of an attacker who has a sample of size m 

of the PINs; the previous results are special cases for m = 0, 1, and .  Bentley and 
Mallows [2005] prove that PA is in fact a non-decreasing function of the size of the 
sample. 

4.2   The Customer 

Now consider a customer C with a particular PIN, x(C).  This customer wants to 
know the probability that an attacker will guess exactly this PIN.  If the correspond-
ing px is not equal to p1, we could argue that this customer is perfectly protected, since 
an optimal attacker with complete knowledge will never guess this PIN.  But what 
about an attacker who chooses a different strategy?  To measure the degree of assur-
ance the customer has, we need to be specific as to what attacks are considered.  
Clearly, there is no protection against an attacker who has inside information as to 
this particular PIN.  We assume that the most an attacker can know is statistical in-
formation as to the distribution of PINs over the bank's customers, that is, the com-
plete vector p.  We cannot allow the possibility that an attacker may have any possi-
ble (mistaken) value of p, since this would allow the possibility that he believes that 
the particular PIN x(C) is very likely.  We need to specify the information the attacker 
may have, ranging from none to complete (accurate) knowledge of p. 

A naive attacker will guess x(C) correctly with probability 1/N, no matter what px 
is.  An attacker who has seen a single PIN, say y, and who guesses that value for x(C) 
will succeed with probability py.   An attacker who knows p completely, and who 
therefore guesses some y with py = p1, can succeed (in guessing x(C)) only when px = 
p1 and otherwise is sure to fail.  We suggest that an appropriate measure of the assur-
ance that a customer C has is the minimum of these three values, so that 

assurance(x)  =  - log max(1/N,  px)          (1) 

Note that this conservative formula is correct both when px = p1 and when px  p1. 
The formula (1) is not completely satisfactory.   Consider a key-space with N=5, 

and two alternative p-vectors:  pa = (.4, .3, .1, .1, .1) and pb = (.3, .2, .2, .2, .1).  Ac-
cording to (1), the PINs with p = .3 are equally secure in these two cases, but this 
seems wrong since an attacker who knows p (or even an approximate value of p) will 
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guess this PIN correctly in case (b) but will never do so in case (a).  More appropriate 
measures of assurance might take rank into account. 

4.3   The Bank 

While a naive view is that a 4-digit PIN affords the max-entropy of log 10000 ~ 13.3 
bits of assurance, the bank cannot claim that each individual customer has this degree 
of assurance.  More relevant measures include the mean assurance (the Shannon en-
tropy, for a single-peek attacker) and the assurance given the most vulnerable cus-
tomer (the min-entropy).  The bank can improve these measures in several ways.  One 
way, which is done by few banks and resented by many customers, is to issue random 
PINs to customers instead of allowing customers to choose their own PINs.  But even 
this approach raises difficult questions: What if current customers have typical PINs, 
and a random process issues a new customer the common PIN 1111? 

Alternatively, the bank can urge its customers to avoid “common” PINs, but how 
can this be done without giving away information as to which PINs are common?  
One possibility is for the bank to urge its customers to choose PINs that contain four 
different digits.  This reduces the key-space to N = 5040, and so surrenders about one 
bit of assurance relative to the full N=10000.  Yan, Blackwell, Anderson and Grant 
[2000] apply such an approach to computer passwords. 

4.4   Who Knows What When? 

We have seen that assurance depends strongly on what the attacker knows about the 
distribution of the PINs.  If the attacker assumes that each element is equally likely, 
then the assurance is the max-entropy of log N bits; if the attacker knows the most 
likely key, then the assurance is the min-entropy of – log p1 bits; if the attacker sam-
ples a single key, then the weighted average assurance is the Shannon entropy. 

The attacker’s strategy can also change as a function of what he knows (or as-
sumes) about the assurance that the bank assigns to each guess. If an attacker knows 
the complete probability distribution, and also knows that the bank assigns the same 
assurance to every correct answer, then his optimal strategy is to choose the most 
likely PIN.  But if the bank knows that that attacker will behave in exactly that way, 
then the bank should assign small assurance to the most likely answer.  In fact, if the 
bank assumes that the knowledgeable, rational attacker makes that choice with prob-
ability 1, then it must associate –log 1 = 0 bits of assurance with that answer, and 
infinite assurance with every other answer. 

But if the attacker in turn knows that the bank employs that modified policy, then 
the attacker’s revised optimal strategy is to choose the second most frequent PIN.  
And so it goes, depending on who knows what when.  After wandering through a 
game-theoretic analysis reminiscent of “Rock-Paper-Scissors”, we soon arrive at 
“The Paradox of the Surprise Examination” (see Wischik [1996]). 4 

                                                           
4 In that paradox, the teacher announces to a class that there will be an exam one day next week 

(Monday through Friday) on a day when the students do not expect it.  But the exam cannot 
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Many analyses show such a lack of stability.  The bank posits a set of probabilities 
and assurances, and analyzes the attacker’s strategy, which results in a new and dis-
tinct set of assurances.  A stable strategy always exists in a two-person, zero-sum 
game.  Unfortunately, we do not see how to formulate the present problem as such a 
game.  We will study an alternate approach to stability in the next section. 

5   Inducing Uniformity 

Analysis of uniform probabilities is straightforward.  Unfortunately, few events in 
human memory are truly uniform; humans tend to know obscure but nonuniform 
facts.  In this section we will study ways in which we can induce uniformity. 

5.1   Accumulating Assurance 

So far we have considered the assurance of a single transaction: how much does one 
answer yield?  In many contexts, though, we are interested in accumulating the assur-
ance of a sequence of questions.  To gain access to personal financial information, for 
instance, one has to give correct answers to a series of questions such as “what is 
your birth date?” and “what are the last four digits of your Social Security number?”  
We now turn our attention to systems that collect a large number of questions and 
answers from a user at registration, and at login ask a subset of the questions to au-
thenticate the user in the presence of potential attackers. 

The probability that an attacker correctly guesses one of 16 items chosen uni-
formly is 1/16, which corresponds to 4 bits of assurance. If the bank presents a sec-
ond independent question of 16 choices, then the probability and bits are the same.  
The probability of correctly guessing both answers multiplies to 1/256, and the bits 
correctly sum to 8.  Straightforward accumulation of assurance is indeed straightfor-
ward. 

Accumulation becomes subtle when the attacker knows more about the bank’s 
mechanism.  If the attacker has guessed enough correct answers to need just one more 
bit of assurance to break in to an account, for instance, then he might take a very 
different approach than when he still needs to accumulate many bits, and this can 
substantially change the attacker’s optimal strategy.  The change in strategy can 
change probabilities, which also changes bits of assurance.  Henceforth we will ig-
nore this complication, and assume that the attacker’s goal is to act for the long run. 

5.2   Grooming a Single Question 

Perfectly uniform distributions are hard to attack, easy to analyze, and, unfortunately, 
relatively uncommon in human memories.  Even gender is not determined by a fair 
                                                                                                                                           

take place on Friday, because after Thursday had passed with no exam, the students would 
expect it on Friday.  For the same reason, the exam could not take place on Thursday, and so 
on. 
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coin toss -- the CIA World Factbook (at www.cia.gov/cia/publications/factbook/) 
reports that at birth the male/female ratio in the USA is 1.05.  But just as dieters hope 
that “inside every fat person is a thin person trying to get out”, so we observe that 
“inside every skewed distribution is a uniform distribution trying to get out”. 

To induce uniformity into a nonuniform binary question, for instance, we can ran-
domly exclude some members of the larger set.  For example, assume that 1000 regis-
trants report that their gender is female, and 1050 report male.  An attacker might 
gain a slight advantage by guessing male more often than female.  We can remove 
that advantage by randomly selecting 50 of the males to exclude from that question; 
we instead use other questions to verify their identity.  The result is a perfectly bal-
anced question, which provides precisely one bit of assurance. 

For a multiple-choice question, assume that 1000 responses to a four-answer ques-
tion occur with these nonuniform frequencies: 
   A   B   C  D     
 350 325 300 25 
We can groom this into a perfectly uniform question for 900 of the respondents by 
excluding all 25 Ds and randomly excluding 50 As and 25Bs: 
   A   B   C      
 300 300 300 
We have chosen answer C as the grooming point.  We will no longer ask this ques-
tion of the 100 excluded respondents (50 As, 25 Bs and 25 Ds), and instead ask other 
authentication questions of them.  (In this single-question grooming, it is important to 
exclude the respondents before any login attempts; if we randomize at each login, an 
attacker might observe that a certain question is asked rarely, and thereby deduce that 
the particular respondent gave a common answer.)  We have induced perfect uniform-
ity by trimming ten percent of the responses, at the cost of reducing the number of 
bits of assurance per response from the maximum possible of 2 to just log 3 ~ 1.585.  
If a knowledgeable attacker does not know that the distribution has been groomed, he 
might still tend to answer A; his probability of success is exactly 1/3, which is accu-
rately reflected in the bits of assurance. 

The grooming process divides a distribution into three parts: 
 
 
 
 

 
 
 

 
The grooming point is the right boundary of the Body, and the height of that particu-
lar value defines the top of the Body.  The elements in the Top are discarded at ran-
dom; the elements in the Tail are all discarded, and the result is the uniform Body.  
Those remaining elements are truly uniform.  If the grooming point is at the Gth ele-
ment, then log G bits of assurance are assigned, and the probability of an attacker 
guessing a randomly chosen element on the first try is 1/G, and by the Kth try is K/G; 
the expected number of guesses before success is (G+1)/2, and the worst-case number 

Top

TailBody
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is G.  It is not coincidental that after grooming, we have the condition p1 =  p2 =... =  
pG > pG+1  ...  pN that we analyzed in Section 4.1.  

We have extended the basic idea of grooming in several ways.  We can admit the 
elements in the Tail (the 25 people who answered D above, for instance) without 
compromise by still assigning just log G bits for each answer.  This conservative 
policy provides a lower bound on the number of assurance bits and therefore an upper 
bound on the probability of an attacker successfully guessing. 

In the example above, answer C was an obvious grooming point.  Grooming to an-
swer D would have reduced all counts to 25, and therefore excluded too many an-
swers.  Grooming only to answer B would have raised one count from 300 to 325, but 
at the cost of reducing the bits of assurance from log 3 to log 2.  A linear-time pro-
gram can scan a sorted sequence of frequencies (or probabilities).  If registration time 
is critical, then one might choose the grooming point as the item that maximizes the 
number of bits per response times the number of non-excluded responses, which is 
the bits per original response.  If login time is critical, then one might choose a larger 
grooming point to collect more bits at each authentication attempt. 

The table below shows the effect of grooming point.  The first four columns give 
the percentages of a population (in nonincreasing order), and the last three columns 
present the bits per original response for the three grooming points.  The first three 
rows give uniform distributions (over 4, 3 and 2 answers), the fourth row gives the 
example we used earlier in this section, and the next seven rows give real distribu-
tions from the straw poll referred to in Section 3.  Because the first row describes a 
uniform distribution, the right entries give the max-entropy. The 8th line in the table 
shows that bits per original response is not unimodal in the grooming point. Section 
6.1 describes grooming larger data sets.  

  
Percentages Grooming Point 
    2 3 4 
25 25 25 25 1 1.58 2 
33.3 33.3 33.3  1 1.58  
50 50   1   
35 32.5 30 2.5 0.98 1.47 0.20 
31.3 30.9 20.6 17.2 1.00 1.25 1.37 
34.5 34.4 16.0 15.1 1.00 1.00 1.21 
38.6 32.7 20.5 8.3 0.94 1.10 0.66 
40.7 35.4 12.7 11.2 0.95 0.78 0.89 
63.2 26.1 6.6 4.2 0.63 0.38 0.33 
63.6 18.3 10.8 7.3 0.55 0.63 0.58 
65.7 17.0 9.8 7.5 0.51 0.59 0.60 

 
Some pairs of questions that are singly well suited for authentication have the dis-

advantage of being statistically correlated.  At an extreme, the questions of state of 
birth (with the answers Hawaii and Minnesota) and favorite childhood sport (with the 
answers surfing and ice hockey) likely show a strong correlation.  Once an attacker 
guesses one answer to a question, he should be constrained about further guesses.  
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We can incorporate this fact into the analyses of Section 4 by using conditional prob-
abilities. 

Alternatively, we can remove the need for conditional probabilities by pairwise 
grooming to induce independence. Suppose that two potential authentication ques-
tions ask of voters in the 2004 USA presidential election “With what party are your 
registered?” and “For whom did you vote for president?”  Further assume that in one 
(illustrative, not typical) community, 1000 respondents had this matrix of answers: 
  Republican Democrat 
 Bush       300       200 
 Kerry        200       300 
That is, 300 Republicans voted for Bush and 200 Republicans voted for Kerry, while 
the Democrats voted in exactly the opposite numbers.  We can replace that matrix 
with the uniform 2 2 matrix that consists of four entries of 200 by randomly groom-
ing out 100 of the 300 Republican Bush voters and 100 of the 300 Democratic Kerry 
voters. 

5.3   Grooming a Series of Questions 
 
Suppose that the bank has recorded the answers that each customer has given to a 
large set of questions.  We assume that an attacker knows the frequency with which 
each answer is given in the population of customers, but does not know anything 
about the particular customer he is attacking.  To assess an attack, the bank needs to 
choose some set of questions to ask, such that the probability that the attacker suc-
ceeds in answering all these questions correctly is less than some preassigned value. 

This objective can be achieved in the following way, at least when all questions 
have the same number of answers.  Suppose the responses to each question have been 
ordered from most popular to least popular. The bank chooses a sequence of M de-
sired responses as a sequence of independent random variables having some common 
distribution F, which the bank chooses; the attacker may know F.  The bank then asks 
questions that this particular customer has answered in the desired way.   From the 
attacker's point of view, he is trying to guess a sequence of independent random vari-
ables, distributed according to F, so his optimal strategy is to give the most likely 
response (according to F) every time.  The fact that he can observe which questions 
are being asked does not help him.  (This remark is not entirely trivial.)  The prob-
ability that the attack succeeds is just f1

M where f1 is the largest probability in F.  
This scheme cannot be applied to protect a customer who has not given a suffi-

ciently diverse set of responses.  
While this scheme does provide the customer with the desired measure of assur-

ance, a customer who is successfully attacked may feel cheated because although he 
answered many questions with responses other than the most popular one, on this 
occasion the (incompetent) bank asked only questions that were easy to guess.  To 
avoid this outcome, let us change the bank's strategy.  The bank can work out how 
many realizations of each possible response can be expected in M questions; it con-
strains the sequence of desired responses so that it is a random permutation of these 
numbers of each response.  The bank announces this information, so an attacker who 
has been paying attention will now choose his guesses in the same way: as a random 
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permutation of these numbers of each type of response.  The probability that the at-
tacker succeeds is now the reciprocal of a multinomial coefficient.   Any other attack 
has a smaller chance of succeeding.   The bank can therefore design the scheme to 
provide any desired degree of assurance. 

6   Applications 

So far we have described our techniques in straightforward contexts.  In this section, 
we will see how the methods can be applied in more substantial domains. 

6.1   Names 

Many humans are able to remember the names of childhood friends, and that informa-
tion is often difficult for attackers to learn (at least it was before membership in youth 
clubs was posted on the Web).  How much assurance is contained in a name such as 
Mary or Ardelia or Smith or Aalderink?  We will study data from the U.S. Census 
Bureau’s web site at www.census.gov/genealogy/www/freqnames.html.  A file of 
88,799 last (family) names accounts for 90% of the sample population and begins 
with these three lines: 

SMITH          1.006  1.006      1 
JOHNSON        0.810  1.816      2 
WILLIAMS       0.699  2.515      3 

The names appear in decreasing order by frequency.  The second line says that the 
name Johnson accounts for 0.810 percent of the sample population, that the names so 
far in the file account for 1.816 percent, and that Johnson is the second most frequent 
name in the sample.  The min-entropy is –log 0.01006 = 6.635 bits for Smith.  The 
Shannon entropy of that file is 9.969 bits, which is the weighted average assurance 
(over all customers) against a single-peek attacker. 

We wrote a linear-time program to groom the set of names, and found that the 
grooming point that maximizes total assurance bits was at Adkins, the 394th name in 
the file, which accounts for 0.029 percent of the names.  All names are therefore 
assigned log 394 = 8.622 bits of assurance.  The 394 names account for 32.478% of 
all names, but we must exclude some fraction of those (that occur above the threshold 
of 0.029%).  For instance, we exclude the unlucky 0.670% of the population that had 
the last name of Williams and was chosen to be excluded by grooming; we also ex-
clude half of the people named Dunn (the 160th most common name, with 0.058% of 
the sample).  Altogether, grooming excludes 21.448% of the population, but assigns 
8.622 bits of assurance to the remaining 78.552% of the population.  That gives an 
average of 6.807 bits per (original) name. 

The probability of success of any attacker against a randomly chosen name is at 
most 1/394.  Still, the few Smiths lucky enough to survive grooming might feel that 
they are particularly vulnerable against an attacker who is knowledgeable about the 
distribution of last names yet ignorant of the fact of grooming.  The Bank could 
soothe those fears by announcing to all potential Attackers that the data had been 
groomed. 
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We applied similar analyses to files of male and female first names from the same 
web site.  (Since the popularity of first names changes quickly over the years, a clever 
attacker should take birth date into account, and use names popular at the time.)  The 
1219 male names accounted for 90% of the population, with James the most popular 
at 3.318%.  The optimal grooming point was at the 77th name (Aaron, which ac-
counted for 0.240% of all names).  This assigned log 77 = 6.267 bits of assurance to 
the non-excluded 63.77% of the population, for an average of 3.997 bits per (original) 
name.  The 4275 female names accounted for 90% of the population, with Mary the 
most popular at 2.629%.  The optimal grooming point was at the 112th name (Rosa, 
which accounted for 0.194% of all names).  This assigned log 112 = 6.807 bits of 
assurance to the non-excluded 76.24% of the population, for an average of 5.190 bits 
per (original) name.  Our experiments are summarized in this table. 

 
 

 Total 
Names 

Shan-
non 

Entropy 

Min- 
Entropy 

Groom-
ing 

Point 

Bits Per 
Name 

Names 
Ex-

cluded 

Bits Per 
Origi-

nal 
Name 

Last 88,799 9.969 6.635 394 8.622 21.45% 6.807 
Female 4275 8.591 5.249 112 6.807 23.76% 5.190 
Male 1219 7.386 4.914 77 6.267 36.23% 3.997 

 

6.2   Grooming PINs 

Grooming is straightforward to apply to multiple-choice questions in which there are 
a handful of options.  Grooming is also useful for four-digit PINs. Suppose, for in-
stance, that of the 10,000 possible four-digit PINs, 8000 were rarely chosen, while 
2000 were chosen frequently.  We would choose a grooming point of 2000 in the 
descending-frequency list of PINs, and therefore conservatively assign just log 2000 
(or about 11) bits of assurance to each PIN.  We would still ask about the 8000 PINs 
in the Tail, but we would not use them to compute assurance. 

Let us further suppose that of the 2000 frequent PINs, most were chosen relatively 
uniformly, while a popular few were chosen often (such as 1111, 1234, 9876 and the 
like).   We might coerce the users to change them those particularly common PINs, or 
insist on some additional information at authentication.  Alternatively, we could as-
sign less assurance, using formula (1) from Section 4.2.  The small assurance might 
be enough to inquire about account balance, for example, but not enough to drain 
money from an account. 

6.3   How Much Assurance Does a CAPTCHA Provide? 

In a Completely Automated Public Test to tell Computers and Humans Apart 
(CAPTCHA), the Bank wishes to distinguish a human Customer from a robotic At-
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tacker.  Rather than providing each human a distinct secret password, the bank gives 
a test that is easy for humans yet hard for computers.  A typical test is to read a se-
quence of distorted letters.  The test should provide little inconvenience to a human, 
but enough difficulty so that an attacker usually fails the test.  Assurance is an appro-
priate measure of that difficulty. 

How well does a blind Attacker do against a CAPTCHA of visual letters?  If the 
challenge text is chosen uniformly from a dictionary of 1024 common words, it car-
ries 10 bits of assurance (the randomly guessing Attacker has probability 1/1024 of 
success).  If 8 characters are chosen uniformly from a set of 32 characters (start with 
26 upper-case letters and 10 digits, and throw out near misses like “I” and “1” and 
“2” and “Z”), then the text will have 8´5 = 40 bits of assurance.  When Chew and 
Baird [2003] generate a pronounceable 8-character challenge from an order-3 Markov 
chain, how many bits of assurance does it carry?  While the exact probability of the 
process selecting the given challenge is straightforward to compute, we conjecture 
that the inherent nonuniformity will make the probability of a clever attacker succeed-
ing in guessing very hard to determine.  We also conjecture that a “groomed” Markov 
chain would be easy to analyze yet still yield challenges that “look like” English text. 

Smart attackers of CAPTCHAs use Optical Character Recognition systems that are 
far from blind.  How do we analyze their probability of success?  We conjecture that 
a misrecognition matrix showing how often each character is mistaken for another 
(“C” might be mistaken for “O” more frequently than it is for “X”) will be key for 
such analysis. 

6.4   Lotteries 

Consider a lottery where patrons choose a key (from some known finite set) and win-
ners are decided by a random draw (perhaps on TV using a physical randomizing 
mechanism).    This is an instance of a special case of our problem where the Attack-
ers are the patrons, and the secret password is the randomly selected winning key.  It 
differs from our general case in that there is no analog of the particular Customer, 
who owns an individual password and has an interest in its security.   For such a uni-
form lottery, both the bank and the patrons can agree that the security of the key is 
properly measured by the size of the key-space (or the logarithm of this).  

Now suppose that the randomizing mechanism does not produce keys uniformly. 
(This happened in the early days of the US draft lottery.)  We assume that successive 
draws are independent, but not uniformly distributed.  If the true distribution is not 
known by the patrons, they will still measure security by log N, and will have no 
reason to prefer one key over another.  If they do know the distribution, however, or 
if they get an estimate of it by accumulating data over time, then they will need to 
reassess.  The system becomes all the more interesting if the winnings are divided 
equally among fellow successful attackers, so attackers benefit from selecting an 
answer that is guessed by few other attackers.  Becker, Chambers and Wilks [1988, 
Section 1.2] describe how this happened early in the New Jersey Pick-It Lottery. 
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7   Conclusions 

Dictionaries define assurance as a statement that inspires confidence.  The goal of this 
paper is to quantify the amount of assurance contained in a particular message.  In 
Human Interactive Proofs, that message might be the answer to a multiple-choice 
question, a PIN, the text in a visual CAPTCHA, or a password.  

Section 2 phrases the problem in terms of PINs, and gives anecdotal evidence to 
show that human secrets tend to be nonrandom.  Section 3 shows that neither the 
classical Shannon entropy nor other more recent entropic proposals completely cap-
tures assurance.  

Section 4 surveys ways of quantifying assurance from various viewpoints.  Many 
of the modifications of entropy are in fact relevant in various contexts.  For nonuni-
form distributions, though, the assurance varies greatly with assumptions regarding 
the knowledge of the attacker and regarding “who knows what when”.  Section 5 
therefore proposes methods to “groom” nonuniform distributions to induce uniform-
ity.  By guaranteeing uniformity we ensure that we can employ the straightforward 
measure of max-entropy.  Section 6 shows how the methods can be applied to prob-
lems in and beyond human authentication. 

This paper has taken steps towards a theory of assurance.  Our long-term goal, 
though, is assurance engineering, which would allow authentication engineers to 
quantify the assurance of various schemes.  In designing a CAPTCHA, for instance, 
we might want to know how much assurance is contained in 10-characters of order-4 
Markov text versus 6 characters of order-1 Markov text.  We could use such numbers 
together with analyses of readability, pronouncability, familiarity and so forth to 
achieve a provably good design.  We consider the following problems particularly 
ripe for further work. 

Improvements to Grooming.  Section 5 described straightforward grooming algo-
rithms, and Section 6 showed that they are fairly efficient in some applications.  We 
conjecture that more advanced grooming algorithms might be even more efficient. 

Authentication Contexts.  We blithely assumed that an attacker is allowed a single 
guess to produce an absolutely correct answer.  Many systems give a user a few tries 
to allow for mistyping or misremembering before taking draconian measures (such as 
seizing an ATM card).  We conjecture that in many contexts, allowing success on the 
Kth guess increases the probability of success by a factor of at most K, so log K bits 
should be subtracted from assurance thus attained.  We suspect that similarly simple 
expressions could be found to quantify the assurance of schemes that allow “near” 
answers, such as one wrong multiple-choice question or missing a character or two in 
a visual CAPTCHA. 

Real Distributions.  Section 6.1 applied grooming to English names.  People also 
tend to remember a variety of other “personal facts” that could be used for authentica-
tion, such as telephone numbers, street names and street numbers, postal codes and 
the like.  It would be useful to collect and to analyze such distributions.  Dates are 
particularly interesting.  Barring insider information, it seems that the response to the 
question “my sister’s birthday” might have about log 365.25 bits of assurance, even if 
the attacker could guess the year.  The response to “James and Mary’s wedding anni-
versary” might carry far fewer bits, because of cultural propensities towards “June 
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brides” and weekend weddings (assuming that an attacker could guess the year in 
question). 

Structure of Passwords.  Humans tend to compose passwords in predictable fash-
ions.  A user might combine a name, a punctuation mark, and a month into the pass-
word “ophelia-april”.  A dog fancier might memorize the personally significant 
phrase “the best dogs are my 3 Cocker Spaniels at home” and from it derive the 
password “tbdam3CS@h”.  It would be interesting to characterize the assurance in 
such well-defined password schemes. 
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Abstract. In this paper, we propose a new class of Human Interactive
Proofs (HIPs) that allow a human to distinguish one computer from
another. Unlike traditional HIPs, where the computer issues a challenge
to the user over a network, in this case, the user issues a challenge to the
computer. This type of HIP can be used to detect phishing attacks, in
which websites are spoofed in order to trick users into revealing private
information.

We define five properties of an ideal HIP to detect phishing attacks.
Using these properties, we evaluate existing and proposed anti-phishing
schemes to discover their benefits and weaknesses.

We review a new anti-phishing proposal, Dynamic Security Skins (DSS),
and show that it meets the HIP criteria. Our goal is to allow a remote
server to prove its identity in a way that is easy for a human user to
verify and hard for an attacker to spoof. In our scheme, the web server
presents its proof in the form of an image that is unique for each user
and each transaction. To authenticate the server, the user can visually
verify that the image presented by the server matches a reference image
presented by the browser.

1 Introduction

Human Interactive Proofs (HIPs) allow a computer to distinguish a specific class
of humans over a network. HIPs can be designed to distinguish a human from
a computer, one class of humans from another or one particular human from
another human. To do this, the computer presents a challenge that must be easy
for that class of humans to pass, yet hard for non-members to pass. Additionally,
the results must be verifiable by a computer, and the protocol must be publicly
available. [1]

In this paper, we propose a new class of HIPs that allow a human to dis-
tinguish one computer, or computer generated message, from another. Unlike
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traditional HIPs, where the computer issues a challenge to the user over a net-
work, in this case, the user issues a challenge to the computer. The challenge
must:

1. be easy for a particular class of computers to pass,
2. be hard for other computers to pass, even after observing a number of suc-

cessful authentications,
3. produce results that are easy for a human to verify,
4. use a protocol that is publicly available, and
5. not require the user to have specialized tools.

This class of HIPs can be used by a human to distinguish a known and legitimate
website from an unknown one. Such a HIP would be useful in helping humans to
detect phishing attacks. In a phishing attack, the attacker spoofs a website (e.g.,
a financial services website). The attacker draws a victim to a rogue website,
sometimes by embedding a link in email and encouraging the user to click on
the link. The rogue website usually looks exactly like a known website, sharing
logos and images, but the rogue website serves only to capture the users personal
information. Many phishing attacks seek to gain credit card information, account
numbers, usernames and passwords that enable the attacker to perpetrate fraud
and identity theft.

About two million users gave information to spoofed websites resulting in
direct losses of $1.2 billion for U.S. Banks and card issuers in 2003, [2] Some
phishing attacks have been able to convince up to 5 percent of their recipients
to respond and provide sensitive information. [3] Phishing attacks are successful
because current web authentication mechanisms do not meet our third require-
ment; it is not easy for humans to verify that a successful authentication has
taken place.

In Section 2, we present an analysis of authentication and anti-phishing
schemes using the HIP criteria. In Section 3, we review a system, Dynamic
Security Skins (DSS), that meets the HIP criteria and that allows a remote
server to prove its identity by displaying an image to the user. [4] We present
our conclusions and future work in Section 4.

2 Analysis of Authentication and Anti-phishing Schemes

2.1 Overview

In this section, we analyze authentication and anti-phishing schemes using the
criteria for an ideal HIP. In this class of HIP, the user issues a challenge to the
computer. The challenge must:

1. Be easy for a particular class of computers to pass. A scheme can meet this
criteria if a specified server can reliably authenticate itself to the user without
extraordinary resources.
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2. Be hard for other computers to pass. Schemes meet this criteria if it is
difficult for illigitimate computers to masquerade as the legitimate server,
even after observing a number of successful authentications. Furthermore, it
should be hard for illegitimate servers to spoof the indicators of a successful
authentication.

3. Produce results that are easy for a human to verify. A user should be able to
verify that a successful authentication has taken place, without any undue
burden on the user in terms of effort, memory or time. Furthermore, in order
to meet this criteria, it must by easy for a user to distinguish the legitimate
server from a spoofed server.

4. Use a protocol that is publicly available. We note whether the protocol,
technical details, source code or policies of the scheme are publicly available.

5. Not require the user to have specialized tools. We note whether the scheme
requires users to have any specialized devices or to store or manage any
secrets (e.g., cryptographic keys) in order to successfully verify a legitimate
server.

In general, attempts to solve the phishing problem can be divided into three
categories: third party certification, direct authentication, and phishing specific
tools. In order to discover the benefits and weaknesses of each solution, we ana-
lyze them using the HIP criteria discussed above. We discuss our analysis in the
next sections, and our results are summarized in Table 1.

2.2 Third Party Certification

Hierarchical Trust Models

SSL/TLS. Public Key Infrastructure (PKI) has long been proposed as a method
for users and servers to authenticate each other. In PKI, chains of Certificate
Authorities (CAs) vouch for identity by binding a public key to an entity in a
digital certificate. The Secure Sockets Layer (SSL) protocol and Transport Layer
Security (TLS), its successor, both rely on PKI. SSL/TLS allows a server and
client to authenticate each other and to negotiate an encryption algorithm in
order to communicate privately.

In the typical use of SSL today, only the server is authenticated, by obtaining
an SSL server certificate that is signed by a trusted CA. SSL also supports mutual
authentication, where both the client and the server are authenticated, however
this mode of operation requires the user to obtain a personal certificate. Though
it is an active area of research, there is currently no practical scheme for widely
deploying signed personal certificates. A further challenge is how to handle the
revocation of credentials. SSL is designed to prevent eavesdropping, tampering,
and message forgery in client/server communications. Instead of attacking the
protocol, most phishing attacks use very simple spoofing techniques to trick users
into believing that their connection is “secure”. Some phishing attacks exploit
the fact that users can not reliably parse domain names (e.g. they can not
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distinguish www.paypal.com from www.paypai.com or www.paypal-members-
security.com). Many users can not distinguish a legitimate indicator of a secured
webpage (e.g. an SSL closed lock icon in the status bar of the browser) from
an image of that indicator within the content of a webpage. In many browsers,
there is no indicator for “unsecured” sites. This reduces the chance that users
will notice spoofed trust indicators when they are inserted into an untrusted
page. Other attacks simultaneously display legitimate and illegitimate webpages
(e.g., in frames, multiple windows or borderless pop-up windows) in order to
trick users into believing that both pages originate from the same website.

It also difficult for users to understand and verify SSL server certificates.
Some phishers have gone through the effort of registering a real SSL certificate
for their rogue phishing sites that have a similar name to a legitimate site. [5]
In order to detect this attack, users must be able to inspect the certificate and
to distinguish the domain name of the real website from the rogue site. There
are other examples where the CA certificate issuing process has been subverted
(e.g., Verisign issued two Class 3 code-signing certificates to an individual who
fraudulently claimed to be a Microsoft employee [6]. A user would not be able
to detect this attack by inspecting the certificate).

The SSL protocol is publicly available, and the only tool required by the user
to authenticate a server is a browser that supports SSL. (To authenticate himself
to the server, the user must acquire a personal certificate).

Trustbar. The Trustbar proposal is a third party certification approach that
requires website logos to be certified. The authors suggest creating a Trusted
Credentials Area (TCA) as a fixed part of the browser window. [7] This area can
be used to present credentials from the website, such as logos, icons and seals of
the brand that have been certified by trusted certificate authorities or by peers
using a PGP web of trust.

The proposal does not specify who will certify logos or how disputes will
be resolved in the case of similar logos. If the credentials are signed by trusted
CAs, many of the problems of the SSL certificate validation process also apply
to this proposal. A strength of this solution is that it does not rely on complex
security indicators. However, we expect that all of the spoofing attacks that are
common with SSL today will also be applied to the Trustes Credential Area.
Because the logos do not change, they can be easily copied and the TCA can
be spoofed. An attacker can present an image of the TCA, with the correct
logos, in an untrusted page to make it appear legitimate. The success of this
attack will depend on the design of the TCA. If there is no visible indicator for
unsecured windows, a spoofed TCA may not be detected by users. We expect
that phishers will attempt to register logos that can be confused with legitimate
logos. Therefore, the strength of this proposal will depend on the strength of the
credentials registration process.

The only tool that is required by a user in this scheme is a browser that
supports the Trusted Credentials Area.
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Table 1. Analysis of authentication and anti-phishing schemes using HIP criteria

Scheme

Easy for
specific

computer?

Hard for
other

computers?

Easy for
humans to

verify?
Protocol
available?

Tools
required?

SSL Yes No No1 Yes modified browser
Trustbar Yes No No1 Yes modified browser
PGP Yes Yes No2 Yes PGP client/plug-in
3rd Party Seals Yes No No1 No No
AOL Passcode Yes No No3 No SecurID device
SMS Passwords Yes No No3 No cell phone SMS
Passmark Yes No No4 No secure cookie
SRD Yes Yes No5 Yes modified browser
YURL Yes No No4 Yes modified browser
eBay Toolbar Yes No No1 No modified browser
SpoofGuard Yes No No1 Yes modified browser
Spoofstick Yes No No1 No modified browser
DSS Yes Yes Yes6 Yes modified browser

Distributed Trust Models and Third Party Seals

PGP. Another third party approach is the distributed trust model, such as that
used by Pretty Good Privacy (PGP). [8] PGP relies on third parties to sign public
keys in order to attest that a public key belongs to a particular identity. Unlike
centralized PKI schemes, the “web of trust” model relies on individual users
to make trust judgments. This allows for more flexibility in how authentication
decisions are made, but it requires a great deal of effort on the part of the user
to carefully manage keys and to understand the delegation of trust.

It is difficult to break the encryption algorithms, however one simple attack is
to create a PGP key using a spoofed identity. Before attesting to a key, users are
required to verify the identity of the keyholder (e.g. in a face to face meeting).
If users do not take this step before signing a key, an attacker may be able to
forge a public key in someone else’s name.

Open versions of the PGP protocol are available. In order to authenticate and
to verify other parties, the user must have a PGP client application (or a plug-in
that implements PGP functionality, which is available for many popular e-mail
applications). The user must also store and manage his own private/public key
pair and the public keys of others.
1 This scheme is easy to use, but it is hard to distinguish legitimate sites from spoofs.
2 This scheme is difficult to use.
3 This scheme requires users to carry a device and does not help users to distinguish

legitimate sites from spoofs.
4 This scheme requires per-site customization by the user.
5 This scheme employs blinking border windows that may be distracting to users.
6 See Section 3.
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Third Party Seals. Third party seal programs allow one party to certify an-
other party and offer a “seal of approval” that represents this certification. For
example, Verisign allows parties that have purchased a Verisign SSL certificate
to post a “Secured Seal” on their websites. [9] Visitors can click on the seal to
view a VeriSign-generated pop-up window that contains information about the
website’s SSL certificate and identity. Phishers spoof this seal by copying the im-
age into their own rogue websites. Some phishers also simulate the pop-window
by hosting it on their own server, and many users can not detect that window
does not originate from Verisign. While many users can recognize the seal, only
sophisticated users can distinguish a legitimate seal from an illegitimate one.
These weakness also apply to other third party seal programs like TRUSTe. [10]

The criteria for obtaining the seals is publicly available, and no specialized
tools are required by the user.

2.3 Direct Authentication

Direct authentication approaches include user authentication, server authenti-
cation and mutual authentication schemes.

Multi-factor User Authentication Multi-factor user authentication schemes
use a combination of factors to authenticate the user. The factors are “something
you know” (e.g., a password or PIN), “something you have” (e.g., a token or key)
or “something you are” (e.g., biometrics).

Passcode. America Online’s Passcode program has been proposed as a phishing
defense. [11, 12] This program distributes RSA SecurID devices to AOL mem-
bers. The SecureID device generates and displays a unique six-digit numeric code
every 60 seconds. To login to the AOL website, the user enters his password and
the SecurID code as a secondary password.

This scheme does reduce the value of collecting passwords for attackers be-
cause the passwords can not be used for another transaction. It does not, how-
ever, prevent a man-in-the-middle (MITM) attack. In this case, the attacker lures
a user to a spoofed AOL website to collect both the primary and secondary pass-
words. The attacker can immediately present the passwords to the AOL website
in order to masquerade as the user. The Passcode program does raise the bar for
phishing attacks today, because it requires the phishers to immediately use the
passwords they collect. However, we expect that if the bar is raised everywhere,
this type of live MITM attack will become common.

Because the server is not authenticated, it is difficult for the user to verify if
he is interacting with the AOL webpage or a spoofed webpage. There is also no
way for AOL to verify if the passwords it receives are from a legitimate user or
from an active MITM attack.

The SecurID protocol is not openly available, and this scheme requires the
user to carry a SecurID device.
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SMS Secondary Passwords. In another two-factor user authentication scheme, a
bank delivers a secondary password to the user’s cell phone via Simple Messaging
Service (SMS).[13] In order to login and to authorize financial transactions, the
user must possess his password and the SMS password. Like the AOL passcode
scheme, this scheme is designed to protect the server from fraud, rather than
protecting the user from phishing attacks. Because the server is not authenti-
cated, it is difficult for the user to determine if he is interacting with a legitimate
bank website or a spoofed website.

The security details of this scheme are not openly available, and this scheme
requires the user to carry a cell phone that can receive SMS messages.

Server Authentication Using Shared Secrets

Passmark and Verified by Visa. Shared-secret schemes have been proposed as
one approach to prevent phishing attacks. In proposals such as Passmark [14]
and Verified by Visa [15], the user provides the server with a shared secret,
such as an image or passphrase, in addition to his regular password. The server
presents the user with this shared secret, and the user is asked to recognize it
before providing the server with his password.

The most obvious weakness of this scheme is that the bank must display the
shared secret in order to authenticate itself to the user. If the secret is observed
or captured, the image can be replayed until the user notices and changes it.

In the Passmark scheme, the bank server places a secure cookie on the user
machine, which must be presented at login. This prevents a classic man-in-the
middle (MITM) attack where an attacker interposes himself between the client
and the bank. However, a new type of phishing attack is emerging. In this attack,
the phisher directs the user to a rogue website, and the users browser opens
two windows. The first window displays the real login page of the legitimate
bank with legitimate trust indicators (e.g. SSL closed-lock icon, shared secret
passmark). The second window displays a webpage from a rogue server. By
careful placement of the window, an attacker can convince the user to supply
his password. A user may believe that the trust indicators in the first window
also apply to the second window, or the user may not even notice that a second
window exists.

There is a much easier way to trick the user into revealing his password and
passmark. This involves spoofing the Passmark re-registration process. If the user
wishes to login using a new browser or a new computer, or if the secure cookie
has been deleted, the user must re-register his passmark. Here, the user is shown
a “passmark not shown” screen and must enter his password in order to register.
This process is inconvenient and also creates a spoofing vulnerabilty. An attacker
can direct users to a screen that claims that the cookie has been deleted or does
not exist. The legitimate Passmark error page asks users to ensure that they
have reached the error page by typing in the URL by hand, but a spoofed error
page will not include this warning. Spoofing requires no knowledge of the user
and requires no special skills other than sending email and creating a website.
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A number of attacks are possible that require more difficulty (e.g., break-
ing the secure cookie, physical observation of the secret image, discovering the
potential range of images and then guessing the image). Spoofing is likely to
require the least amount of effort to defeat the most people, and we expect that
this type of spoofing attack will become common if systems like Passmark are
widely deployed.

A final vulnerability of these schemes is that it requires the user to customize
each site he wishes to authenticate. The user must be able to recognize the shared
secret and associate it with the correct server. Research suggests that users are
able to correctly recognize a large number of images. [16] However, if a user is
required to remember different images or passphrases for a number of different
servers, any difficulty in recognizing an image can be exploited by an attacker.

The security details of the Passmark scheme are not publicly available. This
scheme requires the user to store a secure cookie in his browser.

Server Authentication Using Self-shared Secrets These server authenti-
cations schemes differ from shared-secret schemes, because an additional secret
is shared only with the user’s device, rather than shared with a remote server.

Synchronized Random Dynamic Boundaries. Ye and Smith propose “Synchro-
nized Random Dynamic Boundaries” (SRD) to mark authenticated windows in
the browser. [17] This scheme uses a random number generator to set a bit
that determines the frequency of border changes (i.e., the browser border al-
ternates between an inset and outset position). The user’s browser will display
authenticated webpages using a border that “blinks” at the correct frequency.
The browser will also display the correct blinking pattern in a reference window.
Any windows that blink at a different frequency than the reference window can
not be trusted.

A strength of this solution is that rogue servers can not predict the random
number chosen by the browser, and therefore it is difficult to simulate borders
that blink at the correct frequency. Another advantage is that the user simply
needs to compare a window border to the reference window in order to verify
it. Weaknesses of this approach are that dynamically blinking borders may be
annoying and distracting. The security depends on how many border frequency
options are available and how many users can correctly distinguish.

The source code for this proposal is publicly available, and the only tool
required by a user is a browser that is modified to support SRD.

YURL. In the YURL proposal, the user’s browser maintains a mapping of a
public key hash to a “petname”, or nickname. [18] When a user visits a page
identified by a YURL, the browser prominently displays the petname that the
user previously associated with the website. An untrusted site can be recognized
by the absence of a corresponding petname.

One advantage of this scheme is that the secret (the petname) is shared with
the user himself, rather than with the trusted server. Therefore, an attacker must



Phish and HIPs: Human Interactive Proofs to Detect Phishing Attacks 135

be physically present or must compromise the security of the user’s browser or
computer to obtain the petname. However, because the secret does not change,
it can be replayed if it is captured or observed.

The main disadvantage of the scheme is that it requires user customization
for each website (i.e., the user must choose and enter a petname). This scheme
relies on user memory to recognize the secret phrase and to associate it with
the correct website. Therefore, we expect that that the choice of petname will
be predictable. For example, a large subset of users will choose “Amazon” for
Amazon.com.

We recommend that designers should not rely on the absence of a pet name
to identify untrusted windows. Untrusted windows should be marked in a highly
visible way that indicates that no petname is present. Otherwise, attackers can
insert an image of the petname display into an untrusted page to fool users
(especially those users that choose predictable petnames).

The details of the YURL proposal are publicly available, and the only tool
required by the user is a browser modified to display petnames.

2.4 Anti-phishing Tools

eBay Toolbar. The eBay Toolbar is a browser plug-in that eBay offers to its
customers, primarily to help them keep track of auction sites. [19] The toolbar
has a feature, called “AccountGuard” that monitors the domain names that
users visit and provides a warning in the form of a colored tab on the toolbar.
The tab is usually grey, but it turns green if the user is on an eBay or PayPal
site. It turns red if the user is on a site that is known to be a spoof by eBay. The
toolbar also allows users to submit suspected spoof sites to eBay.

Because the colored tab is usually grey, users may ignore this feature in the
toolbar. However, once they know about the feature, it is easy to recognize a
red-colored tab. This scheme requires no effort on the part of the user, other
then to notice color changes in the toolbar.

A drawback to this approach is that it only flags sites that are known to
be spoofs by eBay and PayPal. Users are unlikely to install several toolbars
that apply to other types of websites (though it may be possible to develop one
toolbar that would work for a wider range of sites). The main weakness is that
there is always a period of time between the time that a spoof is detected and
confirmed and when the toolbar can begin reporting spoofs to users. This will
allow some users to view a spoofed page without a warning. If spoof reports are
not carefully confirmed, denial of service attacks are possible.

eBay has not revealed the security policies or technical details of the toolbar.
The only tool required by the user in this scheme is the browser plug-in supplied
by eBay.

SpoofGuard. SpoofGuard is an Internet Explorer browser plug-in that examines
web pages and warns users when webpages have a high probability of being spoofs
[20]. This calculation is performed by examining the URL, images, and links,
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comparing them to the stored history and by looking for other characteristics of
spoofed sites.

The main weakness of this approach is that the SpoofGuard checks can be
evaded by simple modifications to spoof pages. If adopted, SpoofGuard will
force phishers to work harder. However, new detection tests must be continu-
ously deployed as phishers become more sophisticated. SpoofGuard makes use
of PwdHash [21], an Internet Explorer plug-in that replaces a users password
with a one way hash of the password and domain name. As a result, the website
only sees the domain specific hash of the password instead of the password itself.
This is a simple but useful technique in preventing phishers from collecting user
passwords. Unfortunately, it can also create problems where users have multiple
accounts at websites with the same domain name, or where account logins occur
on pages with different domain names.

This scheme requires no effort on the part of the user other than to notice a
status indicator (a red, yellow or green light on the toolbar) and view warning
windows (which can optionally be turned off). No additional tools other than a
browser plug-in are required.

Spoofstick. Spoofstick is a simple toolbar extension for the Internet Explorer and
Mozilla Firefox browsers. [22] The toolbar provides basic information about the
domain name of the website. For example, if the user is visiting Ebay, the toolbar
displays “You’re on ebay.com”. If the user is at a spoofed site, the toolbar might
instead display “You’re on 10.19.32.4”. This toolbar can help the user to detect
phishing attacks where phishers choose domain names that are syntactically or
semantically similar to a legitimate domain name.

Spoofstick is vulnerable to a phishing attack where different websites are
opened in multiple frames in the browser window. Spoofstick may display the
correct domain name from the legitimate site in one frame, while the user is
viewing a site hosted by a rogue server in another frame.

This scheme requires only requires that the user check the domain name listed
in the toolbar. It allows the user to customize the appearance of the toolbar,
which prevents the toolbar itself from being spoofed (e.g. from being displayed
as a static image within the content of an untrusted page).

The technical details of the operation of the toolbar are not publicly available.
The user requires no additional tools other than the browser plugin.

3 Dynamic Security Skins

We evaluate a system that we recently proposed, Dynamic Security Skins (DSS).
DSS allows a remote server to prove its identity in a way that is easy for a human
user to verify and hard for an attacker to spoof[4]. We are implementing DSS as
an extension for the Mozilla Firefox browser. Here we briefly review the system
with respect to the HIP criteria.

Our extension provides the user with a trusted password window. This is
a dedicated window for the user to enter usernames and passwords and for
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the browser to display security information. We establish a trusted path to the
password window by assigning each user a random photographic image that will
always appear in that window. The user should easily be able to recognize the
personal photo and should only enter his password when this image is displayed.
As shown in Figure 1, the photographic image serves as the background of the
window, and it is also transparently overlaid onto the textboxes. This ensures
that user focus is on the image at the point of text entry and makes it more
difficult to spoof the password entry boxes (e.g., by using a pop-up window over
that area).

Fig. 1. The trusted password window uses a background image to prevent spoof-
ing of the window and textboxes

We adapt an existing protocol, the Secure Remote Password protocol (SRP)
developed by Tom Wu [23], that allows a user and server to authenticate each
other over an untrusted network. We chose SRP because it allows us to preserve
the familiar use of passwords, without requiring the user to send his password
to the server. Instead, the user chooses a password and then applies a one-way
function to that secret to generate a verifier. The user sends the verifier to the
server one time. After the first exchange, the user and the server engage in a series
of steps that prove to each other that they hold the verifier, without revealing
it. The protocol resists dictionary attacks on the verifier from both passive and
active attackers, which allows weak passwords to be used safely.

Assuming that a successful authentication has taken place, how can a user
distinguish authenticated web pages from those that are not “secure”? To ac-
complish this, we adapted the SRP protocol (use of this specific protocol is not
a requirement for our approach). In the last step of the protocol, the server
presents a proof to the user in the form of a hash value. In our system, the
server uses the hash value to generate an abstract image, or visual hash. [24]
As a visual hash algorithm, we use Random Art [13], which has previously been
proposed for use in graphical password user authentication. [24, 25, 26] The re-
mote server can use the image to create a “skin” that modifies the appearance
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Fig. 2. The trusted password window displays a visual hash that should match
the website image

Fig. 3. The remote website displays a visual hash in the background of a form

of the webpage or particular elements in a web page (e.g., an image can be
embedded in a web form that requests sensitive information). The user’s browser
can independently compute the same image because it also knows the values of
the verifier and random parameters that were exchanged by each party during
the protocol. The browser presents the user with the image that it expects to
receive from the server in the trusted window. If the website image matches the
image displayed in the user’s trusted window, the user can easily verify that the
information request originates from a known party. DSS meets the criteria for
a HIP that allows humans to detect phishing attacks. In our system, the user
issues a challenge to the server that is:
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1. Is easy for a legitimate computer to pass. A legitimate server that holds the
user’s verifier can display the correct visual hash on its website.

2. Is hard for other computers to pass. A rogue server can not produce a visual
hash that will match the users reference image without the user verifier.
If the visual hash image is observed or captured, it can not be replayed
in subsequent transactions. If users can recognize his personal image, the
trusted window is hard to spoof.

3. Produces results that are easy for a human to verify. Creating a trusted path
to the password window requires no effort (or a one-time customization for
users who wish to change personal images). The user must only recognize
one image to verify the trusted window and visually match two images to
establish the identity of the server.

4. Uses a protocol that is publicly available. The security of DSS does not rely
on the secrecy of the browser or source code or browser extension source
code, and the SRP protocol is publicly available.

5. Does not require the user to have specialized tools. DSS requires the user
to have a browser that includes our extension. It does not require the user
to store or manage any keys. The only secret that must be available to the
browser is the user password (that can be a weak password memorized by
the user).

4 Conclusions and Future Work

In this paper, we propose a new class of HIPs that allow a human to distinguish
one computer from another. In this type of HIP, the user presents a challenge
that must be easy for a particular computer to pass, yet hard for other com-
puters to pass. Additionally, the results must be verifiable by a human, and the
protocol must be publicly available. This class of HIPs can be used by a human
to distinguish a known and legitimate website from an unknown one in order to
detect phishing attacks.

We define five properties of an ideal HIP to detect phishing attacks. Using
these properties, we evaluate existing and proposed anti-phishing schemes to
discover their benefits and weaknesses.

We evaluate a recently proposed system that allows a remote server to prove
its identity in a way that is easy for a human user to verify and hard for an
attacker to spoof. In our scheme, the server presents its proof in the form of an
image that is unique for each user and each transaction. The user’s browser can
independently compute the image that it expects to receive from the server. To
authenticate the server, the user can visually verify that the images match.

We will continue development of the prototype and will conduct a user study
to evaluate the effectiveness of image comparison as a technique for users to
identify remote servers. In the user study, we will test whether users can reli-
ably recognize their trusted window and whether they can be fooled by spoofed
trusted windows and spoofed server images.
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